BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 19708367)

  • 1. Isotopically exchangeable concentrations of elements having multiple oxidation states: the case of Fe(II)/Fe(III) isotope self-exchange in coastal lowland acid sulfate soils.
    Collins RN; Waite TD
    Environ Sci Technol; 2009 Jul; 43(14):5365-70. PubMed ID: 19708367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isotopically exchangeable Al in coastal lowland acid sulfate soils.
    Yvanes-Giuliani YA; Fink D; Rose J; Waite TD; Collins RN
    Sci Total Environ; 2016 Jan; 542(Pt A):129-35. PubMed ID: 26519574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exchangeable and secondary mineral reactive pools of aluminium in coastal lowland acid sulfate soils.
    Yvanes-Giuliani YAM; Waite TD; Collins RN
    Sci Total Environ; 2014 Jul; 485-486():232-240. PubMed ID: 24727041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of isotope exchange methodology to determine the sorption coefficient and isotopically exchangeable concentration of selenium in soils and sediments.
    Collins RN; Tran ND; Bakkaus E; Avoscan L; Gouget B
    Environ Sci Technol; 2006 Dec; 40(24):7778-83. PubMed ID: 17256527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atom exchange between aqueous Fe(II) and goethite: an Fe isotope tracer study.
    Handler RM; Beard BL; Johnson CM; Scherer MM
    Environ Sci Technol; 2009 Feb; 43(4):1102-7. PubMed ID: 19320165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron Stable Isotopes in Bulk Soil and Sequential Extracted Fractions Trace Fe Redox Cycling in Paddy Soils.
    Qi YH; Cheng W; Nan XY; Yang F; Li J; Li DC; Lundstrom CC; Yu HM; Zhang GL; Huang F
    J Agric Food Chem; 2020 Aug; 68(31):8143-8150. PubMed ID: 32633945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential phytoavailability of anthropogenic cobalt in soils as measured by isotope dilution techniques.
    Bakkaus E; Collins RN; Morel JL; Gouget B
    Sci Total Environ; 2008 Nov; 406(1-2):108-15. PubMed ID: 18762325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks.
    Tangalos GE; Beard BL; Johnson CM; Alpers CN; Shelobolina ES; Xu H; Konishi H; Roden EE
    Geobiology; 2010 Jun; 8(3):197-208. PubMed ID: 20374296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes and relations of photosynthesis and iron cycling in anoxic paddy soil amended with high concentrations of sulfate.
    Chen Q; Jia R; Qu D; Li M
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11425-11434. PubMed ID: 28316044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel technique to determine cobalt exchangeability in soils using isotope dilution.
    Wendling LA; Kirby JK; McLaughlin MJ
    Environ Sci Technol; 2008 Jan; 42(1):140-6. PubMed ID: 18350888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupled Fe(II)-Fe(III) electron and atom exchange as a mechanism for Fe isotope fractionation during dissimilatory iron oxide reduction.
    Crosby HA; Johnson CM; Roden EE; Beard BL
    Environ Sci Technol; 2005 Sep; 39(17):6698-704. PubMed ID: 16190229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron Isotope Fractionation during Fe(II) Oxidation Mediated by the Oxygen-Producing Marine Cyanobacterium Synechococcus PCC 7002.
    Swanner ED; Bayer T; Wu W; Hao L; Obst M; Sundman A; Byrne JM; Michel FM; Kleinhanns IC; Kappler A; Schoenberg R
    Environ Sci Technol; 2017 May; 51(9):4897-4906. PubMed ID: 28402123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils.
    Hall SJ; Silver WL
    Glob Chang Biol; 2013 Sep; 19(9):2804-13. PubMed ID: 23606589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron Isotope Fractionations Reveal a Finite Bioavailable Fe Pool for Structural Fe(III) Reduction in Nontronite.
    Shi B; Liu K; Wu L; Li W; Smeaton CM; Beard BL; Johnson CM; Roden EE; Van Cappellen P
    Environ Sci Technol; 2016 Aug; 50(16):8661-9. PubMed ID: 27291525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic mobilization in a seawater inundated acid sulfate soil.
    Johnston SG; Keene AF; Burton ED; Bush RT; Sullivan LA; McElnea A; Ahern CR; Smith CD; Powell B; Hocking RK
    Environ Sci Technol; 2010 Mar; 44(6):1968-73. PubMed ID: 20155899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron(II)-Catalyzed Iron Atom Exchange and Mineralogical Changes in Iron-rich Organic Freshwater Flocs: An Iron Isotope Tracer Study.
    ThomasArrigo LK; Mikutta C; Byrne J; Kappler A; Kretzschmar R
    Environ Sci Technol; 2017 Jun; 51(12):6897-6907. PubMed ID: 28590131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vivianite precipitation and phosphate sorption following iron reduction in anoxic soils.
    Heiberg L; Koch CB; Kjaergaard C; Jensen HS; Hans Christian BH
    J Environ Qual; 2012; 41(3):938-49. PubMed ID: 22565275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting trace metal solubility and fractionation in Urban soils from isotopic exchangeability.
    Mao LC; Young SD; Tye AM; Bailey EH
    Environ Pollut; 2017 Dec; 231(Pt 2):1529-1542. PubMed ID: 28947320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of lead availability in contaminated soil using isotope dilution techniques.
    Tongtavee N; Shiowatana J; McLaren RG; Gray CW
    Sci Total Environ; 2005 Sep; 348(1-3):244-56. PubMed ID: 16162328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.