These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Biopersistence of inhaled nickel oxide nanoparticles in rat lung. Oyabu T; Ogami A; Morimoto Y; Shimada M; Lenggoro W; Okuyama K; Tanaka I Inhal Toxicol; 2007; 19 Suppl 1():55-8. PubMed ID: 17886051 [TBL] [Abstract][Full Text] [Related]
4. Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles. Baker GL; Gupta A; Clark ML; Valenzuela BR; Staska LM; Harbo SJ; Pierce JT; Dill JA Toxicol Sci; 2008 Jan; 101(1):122-31. PubMed ID: 17878152 [TBL] [Abstract][Full Text] [Related]
5. Comparison of dose-response relations between 4-week inhalation and intratracheal instillation of NiO nanoparticles using polimorphonuclear neutrophils in bronchoalveolar lavage fluid as a biomarker of pulmonary inflammation. Mizuguchi Y; Myojo T; Oyabu T; Hashiba M; Lee BW; Yamamoto M; Todoroki M; Nishi K; Kadoya C; Ogami A; Morimoto Y; Tanaka I; Shimada M; Uchida K; Endoh S; Nakanishi J Inhal Toxicol; 2013 Jan; 25(1):29-36. PubMed ID: 23293971 [TBL] [Abstract][Full Text] [Related]
6. An animal exposure system using ultrasonic nebulizer that generates well controlled aerosols from liquids. Serita F Ind Health; 1999 Jan; 37(1):82-7. PubMed ID: 10052304 [TBL] [Abstract][Full Text] [Related]
7. Adapting the Aerogen Mesh Nebulizer for Dried Aerosol Exposures Using the PreciseInhale Platform. Gerde P; Nowenwik M; Sjöberg CO; Selg E J Aerosol Med Pulm Drug Deliv; 2020 Apr; 33(2):116-126. PubMed ID: 31613690 [No Abstract] [Full Text] [Related]
8. Analysis of pulmonary surfactant in rat lungs after inhalation of nanomaterials: Fullerenes, nickel oxide and multi-walled carbon nanotubes. Kadoya C; Lee BW; Ogami A; Oyabu T; Nishi K; Yamamoto M; Todoroki M; Morimoto Y; Tanaka I; Myojo T Nanotoxicology; 2016; 10(2):194-203. PubMed ID: 25950198 [TBL] [Abstract][Full Text] [Related]
9. Influence of realistic airflow rate on aerosol generation by nebulizers. Vecellio L; Kippax P; Rouquette S; Diot P Int J Pharm; 2009 Apr; 371(1-2):99-105. PubMed ID: 19150494 [TBL] [Abstract][Full Text] [Related]
10. Nanoparticles-containing spray can aerosol: characterization, exposure assessment, and generator design. Chen BT; Afshari A; Stone S; Jackson M; Schwegler-Berry D; Frazer DG; Castranova V; Thomas TA Inhal Toxicol; 2010 Nov; 22(13):1072-82. PubMed ID: 20939689 [TBL] [Abstract][Full Text] [Related]
11. Noninvasive in vivo electron paramagnetic resonance study to estimate pulmonary reducing ability in mice exposed to NiO or C60 nanoparticles. Yokoyama H; Ono T; Morimoto Y; Myojo T; Tanaka I; Shimada M; Wang WN; Endoh S; Uchida K J Magn Reson Imaging; 2009 Jun; 29(6):1432-7. PubMed ID: 19425074 [TBL] [Abstract][Full Text] [Related]
12. Physicochemical characterization of nebulized superparamagnetic iron oxide nanoparticles (SPIONs). Graczyk H; Bryan LC; Lewinski N; Suarez G; Coullerez G; Bowen P; Riediker M J Aerosol Med Pulm Drug Deliv; 2015 Feb; 28(1):43-51. PubMed ID: 24801912 [TBL] [Abstract][Full Text] [Related]
13. Effects of flow pattern, device and formulation on particle size distribution of nebulized aerosol. Hu J; Zhang R; Beng H; Deng L; Ke Q; Tan W Int J Pharm; 2019 Apr; 560():35-46. PubMed ID: 30664994 [TBL] [Abstract][Full Text] [Related]
14. Dry powder aerosol delivery of large hollow nanoparticulate aggregates as prospective carriers of nanoparticulate drugs: effects of phospholipids. Hadinoto K; Phanapavudhikul P; Kewu Z; Tan RB Int J Pharm; 2007 Mar; 333(1-2):187-98. PubMed ID: 17084567 [TBL] [Abstract][Full Text] [Related]
15. Real-time characterization of chemical threat agent aerosols for improvement of inhalation studies. de Bruin-Hoegée M; Alkema DPW; Busker RW; Joosen MJA; van Wuijckhuijse AL Inhal Toxicol; 2023; 35(9-10):254-265. PubMed ID: 37729079 [TBL] [Abstract][Full Text] [Related]
16. Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source. Witschger O; Grinshpun SA; Fauvel S; Basso G Ann Occup Hyg; 2004 Jun; 48(4):351-68. PubMed ID: 15191944 [TBL] [Abstract][Full Text] [Related]
17. Quantitative morphometric analysis of pulmonary deposition of aerosol particles inhaled via intratracheal nebulization, intratracheal instillation or nose-only inhalation in rats. Leong BK; Coombs JK; Sabaitis CP; Rop DA; Aaron CS J Appl Toxicol; 1998; 18(2):149-60. PubMed ID: 9570698 [TBL] [Abstract][Full Text] [Related]
18. Changing the dose metric for inhalation toxicity studies: short-term study in rats with engineered aerosolized amorphous silica nanoparticles. Sayes CM; Reed KL; Glover KP; Swain KA; Ostraat ML; Donner EM; Warheit DB Inhal Toxicol; 2010 Mar; 22(4):348-54. PubMed ID: 20001567 [TBL] [Abstract][Full Text] [Related]
19. Inhalation exposure during spray application and subsequent sanding of a wood sealant containing zinc oxide nanoparticles. Cooper MR; West GH; Burrelli LG; Dresser D; Griffin KN; Segrave AM; Perrenoud J; Lippy BE J Occup Environ Hyg; 2017 Jul; 14(7):510-522. PubMed ID: 28406371 [TBL] [Abstract][Full Text] [Related]
20. Nebulization of biodegradable nanoparticles: impact of nebulizer technology and nanoparticle characteristics on aerosol features. Dailey LA; Schmehl T; Gessler T; Wittmar M; Grimminger F; Seeger W; Kissel T J Control Release; 2003 Jan; 86(1):131-44. PubMed ID: 12490379 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]