These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 19708711)

  • 1. Tetrapeptide-based hydrogels: for encapsulation and slow release of an anticancer drug at physiological pH.
    Naskar J; Palui G; Banerjee A
    J Phys Chem B; 2009 Sep; 113(35):11787-92. PubMed ID: 19708711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-Terminal Residue of Ultrashort Peptides Impacts on Molecular Self-Assembly, Hydrogelation, and Interaction with Small-Molecule Drugs.
    Chan KH; Lee WH; Ni M; Loo Y; Hauser CAE
    Sci Rep; 2018 Nov; 8(1):17127. PubMed ID: 30459362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembling peptide nanofibers containing phenylalanine for the controlled release of 5-fluorouracil.
    Ashwanikumar N; Kumar NA; Saneesh Babu PS; Sivakumar KC; Vadakkan MV; Nair P; Hema Saranya I; Asha Nair S; Vinod Kumar GS
    Int J Nanomedicine; 2016; 11():5583-5594. PubMed ID: 27822037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles.
    Altunbas A; Lee SJ; Rajasekaran SA; Schneider JP; Pochan DJ
    Biomaterials; 2011 Sep; 32(25):5906-14. PubMed ID: 21601921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AFM imaging of RGD presenting synthetic extracellular matrix using gold nanoparticles.
    Hsiong SX; Cooke PH; Kong HJ; Fishman ML; Ericsson M; Mooney DJ
    Macromol Biosci; 2008 Jun; 8(6):469-77. PubMed ID: 18383570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling self-assembly of diphenylalanine peptides at high pH using heterocyclic capping groups.
    Martin AD; Wojciechowski JP; Robinson AB; Heu C; Garvey CJ; Ratcliffe J; Waddington LJ; Gardiner J; Thordarson P
    Sci Rep; 2017 Mar; 7():43947. PubMed ID: 28272523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polysaccharide hydrogels with tunable stiffness and provasculogenic properties via α-helix to β-sheet switch in secondary structure.
    Forget A; Christensen J; Lüdeke S; Kohler E; Tobias S; Matloubi M; Thomann R; Shastri VP
    Proc Natl Acad Sci U S A; 2013 Aug; 110(32):12887-92. PubMed ID: 23886665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide Sequence Variations Govern Hydrogel Stiffness: Insights from a Multi-Scale Structural Analysis of H-FQFQFK-NH
    De Maeseneer T; Cauwenbergh T; Gardiner J; White JF; Thielemans W; Martin C; Moldenaers P; Ballet S; Cardinaels R
    Macromol Biosci; 2024 Mar; ():e2300579. PubMed ID: 38552257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc-triggered hydrogelation of a self-assembling β-hairpin peptide.
    Micklitsch CM; Knerr PJ; Branco MC; Nagarkar R; Pochan DJ; Schneider JP
    Angew Chem Int Ed Engl; 2011 Feb; 50(7):1577-9. PubMed ID: 21308908
    [No Abstract]   [Full Text] [Related]  

  • 10. Gelation Behavior and Drug Sustained-Release Properties of a Helix Peptide Organohydrogel with pH Responsiveness.
    Zhang J; Zhao D; Lu K; Yuan L; Du H
    Langmuir; 2024 Apr; 40(16):8568-8579. PubMed ID: 38591865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermo-Switchable de Novo Ionic Liquid-Based Gelators with Dye-Absorbing and Drug-Encapsulating Characteristics.
    Kuddushi M; Patel NK; Rajput S; Shah A; El Seoud OA; Malek NI
    ACS Omega; 2018 Sep; 3(9):12068-12078. PubMed ID: 30320287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Drug Delivery Systems by Transmission Electron Microscopy.
    Hoeppener S
    Handb Exp Pharmacol; 2024; 284():191-209. PubMed ID: 37973626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptide- and Metabolite-Based Hydrogels: Minimalistic Approach for the Identification and Characterization of Gelating Building Blocks.
    Tiwari OS; Rencus-Lazar S; Gazit E
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Light Scattering Investigation of Enzymatic Gelation in Self-Assembling Peptides.
    Buzzaccaro S; Ruzzi V; Gelain F; Piazza R
    Gels; 2023 Apr; 9(4):. PubMed ID: 37102959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular Loading of DNA Hydrogels with Dye-Drug Conjugates for Real-Time Photoacoustic Monitoring of Chemotherapy.
    Borum RM; Moore C; Mantri Y; Xu M; Jokerst JV
    Adv Sci (Weinh); 2022 Nov; 10(1):e2204330. PubMed ID: 36403233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of self-assembling ultrashort peptides in bionanotechnology.
    Ni M; Zhuo S
    RSC Adv; 2019 Jan; 9(2):844-852. PubMed ID: 35517614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled Hydrolysis of Odorants Schiff Bases in Low-Molecular-Weight Gels.
    Nicastro G; Black LM; Ravarino P; d'Agostino S; Faccio D; Tomasini C; Giuri D
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal Cation Triggered Peptide Hydrogels and Their Application in Food Freshness Monitoring and Dye Adsorption.
    Fortunato A; Mba M
    Gels; 2021 Jul; 7(3):. PubMed ID: 34287282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Overview of Porous, Bioactive Scaffolds as Instructive Biomaterials for Tissue Regeneration and Their Clinical Translation.
    Lutzweiler G; Ndreu Halili A; Engin Vrana N
    Pharmaceutics; 2020 Jun; 12(7):. PubMed ID: 32610440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coassembly Generates Peptide Hydrogel with Wound Dressing Material Properties.
    Thota CK; Berger AA; Elomaa L; Nie C; Böttcher C; Koksch B
    ACS Omega; 2020 Apr; 5(15):8557-8563. PubMed ID: 32337417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.