These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 19709210)

  • 1. Growth and chemosensory behavior of sulfate-reducing bacteria in oxygen-sulfide gradients.
    Sass AM; Eschemann A; Kühl M; Thar R; Sass H; Cypionka H
    FEMS Microbiol Ecol; 2002 Apr; 40(1):47-54. PubMed ID: 19709210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerotaxis in Desulfovibrio.
    Eschemann A; Kühl M; Cypionka H
    Environ Microbiol; 1999 Dec; 1(6):489-94. PubMed ID: 11207770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen respiration by desulfovibrio species.
    Cypionka H
    Annu Rev Microbiol; 2000; 54():827-48. PubMed ID: 11018146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth and mechanism of filamentous-sulfur formation by Candidatus Arcobacter sulfidicus in opposing oxygen-sulfide gradients.
    Sievert SM; Wieringa EB; Wirsen CO; Taylor CD
    Environ Microbiol; 2007 Jan; 9(1):271-6. PubMed ID: 17227432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial sulfide oxidation in the oxic-anoxic transition zone of freshwater sediment: involvement of lithoautotrophic Magnetospirillum strain J10.
    Geelhoed JS; Sorokin DY; Epping E; Tourova TP; Banciu HL; Muyzer G; Stams AJ; van Loosdrecht MC
    FEMS Microbiol Ecol; 2009 Oct; 70(1):54-65. PubMed ID: 19659746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of oxygen exposure on respiratory activities of Desulfovibrio desulfuricans strain DvO1 isolated from activated sludge.
    Kjeldsen KU; Joulian C; Ingvorsen K
    FEMS Microbiol Ecol; 2005 Jul; 53(2):275-84. PubMed ID: 16329947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemolithoautotrophy in the marine, magnetotactic bacterial strains MV-1 and MV-2.
    Bazylinski DA; Dean AJ; Williams TJ; Long LK; Middleton SL; Dubbels BL
    Arch Microbiol; 2004 Nov; 182(5):373-87. PubMed ID: 15338111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions of fermentative acidogenic bacteria and sulfate-reducing bacteria to lactate degradation and sulfate reduction.
    Zhao Y; Ren N; Wang A
    Chemosphere; 2008 May; 72(2):233-42. PubMed ID: 18331751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors affecting microbial sulfate reduction by Desulfovibrio desulfuricans in continuous culture: limiting nutrients and sulfide concentration.
    Okabe S; Nielsen PH; Charcklis WG
    Biotechnol Bioeng; 1992 Sep; 40(6):725-34. PubMed ID: 18601173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of sulfate-reducing bacteria with solid-phase electron acceptors.
    Karnachuk OV; Kurochkina SY; Tuovinen OH
    Appl Microbiol Biotechnol; 2002 Mar; 58(4):482-6. PubMed ID: 11954795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of aerotactic band formation by Desulfovibrio desulfuricans in a stopped-flow diffusion chamber.
    Fischer JP; Cypionka H
    FEMS Microbiol Ecol; 2006 Feb; 55(2):186-94. PubMed ID: 16420627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria.
    Lovley DR; Phillips EJ
    Appl Environ Microbiol; 1994 Jul; 60(7):2394-9. PubMed ID: 16349323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Desulfovibrio oceani subsp. oceani sp. nov., subsp. nov. and Desulfovibrio oceani subsp. galateae subsp. nov., novel sulfate-reducing bacteria isolated from the oxygen minimum zone off the coast of Peru.
    Finster KW; Kjeldsen KU
    Antonie Van Leeuwenhoek; 2010 Mar; 97(3):221-9. PubMed ID: 20012196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Containment of biogenic sulfide production in continuous up-flow packed-bed bioreactors with nitrate or nitrite.
    Hubert C; Nemati M; Jenneman G; Voordouw G
    Biotechnol Prog; 2003; 19(2):338-45. PubMed ID: 12675569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of magnetotactic sulfate-reducing bacteria in oxygen concentration gradient medium.
    Lefèvre CT; Howse PA; Schmidt ML; Sabaty M; Menguy N; Luther GW; Bazylinski DA
    Environ Microbiol Rep; 2016 Dec; 8(6):1003-1015. PubMed ID: 27701830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth of sulfate-reducing Desulfobacterota and Bacillota at periodic oxygen stress of 50% air-O
    Dyksma S; Pester M
    Microbiome; 2024 Oct; 12(1):191. PubMed ID: 39367500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfate-reducing bacterial community structure and their contribution to carbon mineralization in a wastewater biofilm growing under microaerophilic conditions.
    Okabe S; Ito T; Satoh H
    Appl Microbiol Biotechnol; 2003 Dec; 63(3):322-34. PubMed ID: 12879306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic microbial response of sulfidogenic wastewater biofilm to nitrate.
    Mohanakrishnan J; Kofoed MV; Barr J; Yuan Z; Schramm A; Meyer RL
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1647-57. PubMed ID: 21611797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of bacterial sulfate reduction in an activated sludge plant.
    Ingvorsen K; Yde Nielsen M; Joulian C
    FEMS Microbiol Ecol; 2003 Nov; 46(2):129-37. PubMed ID: 19719566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced inorganic sulfur oxidation supports autotrophic and mixotrophic growth of Magnetospirillum strain J10 and Magnetospirillum gryphiswaldense.
    Geelhoed JS; Kleerebezem R; Sorokin DY; Stams AJ; van Loosdrecht MC
    Environ Microbiol; 2010 Apr; 12(4):1031-40. PubMed ID: 20105221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.