BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 19709220)

  • 1. Mycelial foraging by Resinicium bicolor: interactive effects of resource quantity, quality and soil composition.
    Zakaria AJ; Boddy L
    FEMS Microbiol Ecol; 2002 May; 40(2):135-42. PubMed ID: 19709220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grazing by Folsomia candida (Collembola) differentially affects mycelial morphology of the cord-forming basidiomycetes Hypholoma fasciculare, Phanerochaete velutina and Resinicium bicolor.
    Tordoff GM; Boddy L; Jones TH
    Mycol Res; 2006 Mar; 110(Pt 3):335-45. PubMed ID: 16487694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mycelial responses of Hypholoma fasciculare to collembola grazing: effect of inoculum age, nutrient status and resource quality.
    Harold S; Tordoff GM; Jones TH; Boddy L
    Mycol Res; 2005 Aug; 109(Pt 8):927-35. PubMed ID: 16175795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reorganization of mycelial networks of Phanerochaete velutina in response to new woody resources and collembola (Folsomia candida) grazing.
    Wood J; Tordoff GM; Jones TH; Boddy L
    Mycol Res; 2006 Aug; 110(Pt 8):985-93. PubMed ID: 16891104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compensatory growth of Phanerochaete velutina mycelial systems grazed by Folsomia candida (Collembola).
    Bretherton S; Tordoff GM; Jones TH; Boddy L
    FEMS Microbiol Ecol; 2006 Oct; 58(1):33-40. PubMed ID: 16958906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foraging strategies of fungal mycelial networks: responses to quantity and distance of new resources.
    Fukasawa Y; Ishii K
    Front Cell Dev Biol; 2023; 11():1244673. PubMed ID: 37691819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patch formation and developmental polarity in mycelial cord systems of Phanerochaete velutina on a nutrient-depleted soil.
    Wells JM; Donnelly DP; Boddy L
    New Phytol; 1997 Aug; 136(4):653-665. PubMed ID: 33863108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resource relationships of foraging mycelial systems of Phanerochaete velutina and Hypholoma fasciculare in soil.
    Dowson CG; Springham P; Rayner ADM; Boddy L
    New Phytol; 1989 Mar; 111(3):501-509. PubMed ID: 33874011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Population structure and responses to disturbance of the basidiomycete Resinicium bicolor.
    Kirby JJ; Stenlid J; Holdenrieder O
    Oecologia; 1990 Dec; 85(2):178-184. PubMed ID: 28312553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nutrient movement and mycelial reorganization in established systems of Phanerochaete velutina, following arrival of colonized wood resources.
    Harris MJ; Boddy L
    Microb Ecol; 2005 Aug; 50(2):141-51. PubMed ID: 16211328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in volatile production during the course of fungal mycelial interactions between Hypholoma fasciculare and Resinicium bicolor.
    Hynes J; Müller CT; Jones TH; Boddy L
    J Chem Ecol; 2007 Jan; 33(1):43-57. PubMed ID: 17146718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of wood resource size and decomposition on hyphal outgrowth of a cord-forming basidiomycete, Phanerochaete velutina.
    Fukasawa Y; Kaga K
    Sci Rep; 2020 Dec; 10(1):21936. PubMed ID: 33318597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporary phosphorus partitioning in mycelial systems of the cord-forming basidiomycete Phanerochaete velutina.
    Wells JM; Harris MJ; Boddy L
    New Phytol; 1998 Oct; 140(2):283-293. PubMed ID: 33862846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecological memory and relocation decisions in fungal mycelial networks: responses to quantity and location of new resources.
    Fukasawa Y; Savoury M; Boddy L
    ISME J; 2020 Feb; 14(2):380-388. PubMed ID: 31628441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of ectomycorrhizal mycelial growth and P transfer to the host plant in response to low and high soil P availability.
    Torres Aquino M; Plassard C
    FEMS Microbiol Ecol; 2004 May; 48(2):149-56. PubMed ID: 19712398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of the fractal nature of mycelial aggregation in Aspergillus niger submerged cultures.
    Papagianni M
    Microb Cell Fact; 2006 Feb; 5():5. PubMed ID: 16472407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrasting effects of elevated temperature and invertebrate grazing regulate multispecies interactions between decomposer fungi.
    A'Bear AD; Murray W; Webb R; Boddy L; Jones TH
    PLoS One; 2013; 8(10):e77610. PubMed ID: 24194892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffuse competition for heterogeneous substrate in soil among six species of wood-decomposing basidiomycetes.
    Holmer L; Stenlid J
    Oecologia; 1996 Jun; 106(4):531-538. PubMed ID: 28307454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Armillaria field isolates using isozymes and mycelial growth characteristics.
    Bruhn JN; Johnson TE; Karr AL; Wetteroff JJ; Leininger TD
    Mycopathologia; 1998; 142(2):89-96. PubMed ID: 16284853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mathematical model for the growth of mycelial fungi in submerged culture.
    Aynsley M; Ward AC; Wright AR
    Biotechnol Bioeng; 1990 Apr; 35(8):820-30. PubMed ID: 18592583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.