These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 19709237)

  • 41. Bacteria associated with Pinus sylvestris-Lactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro.
    Poole EJ; Bending GD; Whipps JM; Read DJ
    New Phytol; 2001 Sep; 151(3):743-751. PubMed ID: 33853249
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolic and Genotypic Fingerprinting of Fluorescent Pseudomonads Associated with the Douglas Fir-Laccaria bicolor Mycorrhizosphere.
    Frey P; Frey-Klett P; Garbaye J; Berge O; Heulin T
    Appl Environ Microbiol; 1997 May; 63(5):1852-60. PubMed ID: 16535600
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Indole-3-acetic Acid-producing bacteria are associated with cranberry stem gall.
    Vasanthakumar A; McManus PS
    Phytopathology; 2004 Nov; 94(11):1164-71. PubMed ID: 18944451
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Location and Survival of Mycorrhiza Helper Pseudomonas fluorescens during Establishment of Ectomycorrhizal Symbiosis between Laccaria bicolor and Douglas Fir.
    Frey-Klett P; Pierrat JC; Garbaye J
    Appl Environ Microbiol; 1997 Jan; 63(1):139-44. PubMed ID: 16535478
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Colonization by the Mycorrhizal Helper
    Wang YH; Kong WL; Zhu ML; Dai Y; Wu XQ
    Front Microbiol; 2022; 13():818912. PubMed ID: 35330763
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The composition of fluorescent pseudomonad populations associated with roots is influenced by plant and soil type.
    Latour X; Corberand T; Laguerre G; Allard F; Lemanceau P
    Appl Environ Microbiol; 1996 Jul; 62(7):2449-56. PubMed ID: 16535355
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phylogenetic Diversity and Population Densities of Culturable Cellulolytic Soil Bacteria across an Agricultural Encatchment.
    Ulrich A; Wirth S
    Microb Ecol; 1999 May; 37(4):238-247. PubMed ID: 10341053
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chitinase and peroxidase activities are induced in eucalyptus roots according to aggressiveness of Australian ectomycorrhizal strains of Pisolithus sp.
    Albrecht C; Burgess T; Dell B; Lapeyrie F
    New Phytol; 1994 Jun; 127(2):217-222. PubMed ID: 33874522
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Plant-microbe interactions through a lens: tales from the mycorrhizosphere.
    Williams A; Sinanaj B; Hoysted GA
    Ann Bot; 2024 Apr; 133(3):399-412. PubMed ID: 38085925
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Newly identified helper bacteria stimulate ectomycorrhizal formation in Populus.
    Labbé JL; Weston DJ; Dunkirk N; Pelletier DA; Tuskan GA
    Front Plant Sci; 2014; 5():579. PubMed ID: 25386184
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling.
    Churchland C; Grayston SJ
    Front Microbiol; 2014; 5():261. PubMed ID: 24917855
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mycorrhization helper bacteria: a case of specificity for altering ectomycorrhiza architecture but not ectomycorrhiza formation.
    Aspray TJ; Frey-Klett P; Jones JE; Whipps JM; Garbaye J; Bending GD
    Mycorrhiza; 2006 Nov; 16(8):533-541. PubMed ID: 16983568
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Soil bacterial diversity responses to root colonization by an ectomycorrhizal fungus are not root-growth-dependent.
    Assigbetse K; Gueye M; Thioulouse J; Duponnois R
    Microb Ecol; 2005 Oct; 50(3):350-9. PubMed ID: 16254760
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae.
    Artursson V; Jansson JK
    Appl Environ Microbiol; 2003 Oct; 69(10):6208-15. PubMed ID: 14532082
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interactions between ectomycorrhizal symbiosis and fluorescent pseudomonads on Acacia holosericea: isolation of mycorrhiza helper bacteria (MHB) from a Soudano-Sahelian soil.
    Founoune H; Duponnois R; Meyer JM; Thioulouse J; Masse D; Chotte JL; Neyra M
    FEMS Microbiol Ecol; 2002 Jul; 41(1):37-46. PubMed ID: 19709237
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species.
    Duponnois R; Plenchette C
    Mycorrhiza; 2003 Apr; 13(2):85-91. PubMed ID: 12682830
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sporocarps of Pisolithus albus as an ecological niche for fluorescent pseudomonads involved in Acacia mangium Wild - Pisolithus albus ectomycorrhizal symbiosis.
    Duponnois R; Lesueur D
    Can J Microbiol; 2004 Sep; 50(9):691-6. PubMed ID: 15644922
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Litter-forager termite mounds enhance the ectomycorrhizal symbiosis between Acacia holosericea A. Cunn. Ex G. Don and Scleroderma dictyosporum isolates.
    Duponnois R; Assikbetse K; Ramanankierana H; Kisa M; Thioulouse J; Lepage M
    FEMS Microbiol Ecol; 2006 May; 56(2):292-303. PubMed ID: 16629758
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ectomycorrhizal symbiosis enhanced the efficiency of inoculation with two Bradyrhizobium strains and Acacia holosericea growth.
    André S; Galiana A; Le Roux C; Prin Y; Neyra M; Duponnois R
    Mycorrhiza; 2005 Jul; 15(5):357-64. PubMed ID: 15616831
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.