BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 19709273)

  • 1. Rapid Daphnia-mediated changes in microbial community structure: an experimental study.
    Degans H; Zöllner E; Gucht K; Meester L; Jürgens K
    FEMS Microbiol Ecol; 2002 Oct; 42(1):137-49. PubMed ID: 19709273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing.
    Jürgens K; Pernthaler J; Schalla S; Amann R
    Appl Environ Microbiol; 1999 Mar; 65(3):1241-50. PubMed ID: 10049890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial community structure and dynamics in the largest natural French lake (Lake Bourget).
    Comte J; Jacquet S; Viboud S; Fontvieille D; Millery A; Paolini G; Domaizon I
    Microb Ecol; 2006 Jul; 52(1):72-89. PubMed ID: 16733620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of nutrient limitation and protozoan grazing determines the phenotypic structure of a bacterial community.
    Matz C; Jürgens K
    Microb Ecol; 2003 May; 45(4):384-98. PubMed ID: 12704556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of decreased resource availability, protozoan grazing and viral impact on a structure of bacterioplankton assemblage in a canyon-shaped reservoir.
    Hornák K; Masín M; Jezbera J; Bettarel Y; Nedoma J; Sime-Ngando T; Simek K
    FEMS Microbiol Ecol; 2005 May; 52(3):315-27. PubMed ID: 16329917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of humic material on the bacterioplankton community composition in boreal lakes and mesocosms.
    Haukka K; Heikkinen E; Kairesalo T; Karjalainen H; Sivonen K
    Environ Microbiol; 2005 May; 7(5):620-30. PubMed ID: 15819844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ciliates are the dominant grazers on pico- and nanoplankton in a shallow, naturally highly eutrophic lake.
    Zingel P; Agasild H; Nõges T; Kisand V
    Microb Ecol; 2007 Jan; 53(1):134-42. PubMed ID: 17186145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term disturbance of a grazer has long-term effects on bacterial communities--relevance of trophic interactions for recovery from pesticide effects.
    Foit K; Chatzinotas A; Liess M
    Aquat Toxicol; 2010 Aug; 99(2):205-11. PubMed ID: 20554058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoplankton community succession shaping bacterioplankton community composition in Lake Taihu, China.
    Niu Y; Shen H; Chen J; Xie P; Yang X; Tao M; Ma Z; Qi M
    Water Res; 2011 Aug; 45(14):4169-82. PubMed ID: 21684570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of virus-induced lysis and protozoan grazing to benthic bacterial mortality estimated simultaneously in microcosms.
    Fischer UR; Wieltschnig C; Kirschner AK; Velimirov B
    Environ Microbiol; 2006 Aug; 8(8):1394-407. PubMed ID: 16872403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Priority effects in experimental populations of the cyanobacterium Microcystis.
    van Gremberghe I; Vanormelingen P; Van der Gucht K; Souffreau C; Vyverman W; De Meester L
    Environ Microbiol; 2009 Oct; 11(10):2564-73. PubMed ID: 19555379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating Influential Factors on Bacterioplankton Community Composition: Results from a Field Study of Five Mesotrophic Lakes.
    Lindström ES
    Microb Ecol; 2001 Dec; 42(4):598-605. PubMed ID: 12024242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trophic interactions within the microbial food web in a tropical floodplain lake (Laguna Bufeos, Bolivia).
    Rejas D; Muylaert K; De Meester L
    Rev Biol Trop; 2005; 53(1-2):85-96. PubMed ID: 17354422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Warming on Growth, Grazing, and Community Composition of Free-Living Bacterioplankton in Subtropical Coastal Waters During Winter and Summer.
    Gu B; Lee C; Ma X; Tan Y; Liu H; Xia X
    Front Microbiol; 2020; 11():534404. PubMed ID: 33123098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional patterns of bacterial communities in response to protist predation along an experimental productivity gradient.
    Corno G; Jürgens K
    Environ Microbiol; 2008 Oct; 10(10):2857-71. PubMed ID: 18684120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental manipulations of microbial food web interactions in a humic lake: shifting biological drivers of bacterial community structure.
    Kent AD; Jones SE; Lauster GH; Graham JM; Newton RJ; McMahon KD
    Environ Microbiol; 2006 Aug; 8(8):1448-59. PubMed ID: 16872407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marine bacterial community structure resilience to changes in protist predation under phytoplankton bloom conditions.
    Baltar F; Palovaara J; Unrein F; Catala P; Horňák K; Šimek K; Vaqué D; Massana R; Gasol JM; Pinhassi J
    ISME J; 2016 Mar; 10(3):568-81. PubMed ID: 26262814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Top-down and bottom-up induced shifts in bacterial abundance, production and community composition in an experimentally divided humic lake.
    Grossart HP; Jezbera J; Hornák K; Hutalle KM; Buck U; Simek K
    Environ Microbiol; 2008 Mar; 10(3):635-52. PubMed ID: 18190513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abundance and structure of microbial loop components (bacteria and protists) in lakes of different trophic status.
    Ryszard CJ; Tomasz A; Kalinowska K; Skowronska A
    J Microbiol Biotechnol; 2009 Sep; 19(9):858-68. PubMed ID: 19809240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana.
    Rosenberg K; Bertaux J; Krome K; Hartmann A; Scheu S; Bonkowski M
    ISME J; 2009 Jun; 3(6):675-84. PubMed ID: 19242534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.