BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 19709914)

  • 1. Visualising the premature brain using 17.6 Tesla magnetic resonance imaging.
    Schmidt MJ; Oelschläger HA; Haddad D; Purea A; Haase A; Kramer M
    Vet J; 2009 Nov; 182(2):215-22. PubMed ID: 19709914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional magnetic resonance observation of cartilage repair tissue (MOCART) score assessed with an isotropic three-dimensional true fast imaging with steady-state precession sequence at 3.0 Tesla.
    Welsch GH; Zak L; Mamisch TC; Resinger C; Marlovits S; Trattnig S
    Invest Radiol; 2009 Sep; 44(9):603-12. PubMed ID: 19692843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of cardiac gating free of interference with electro-magnetic fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla using an MR-stethoscope.
    Frauenrath T; Hezel F; Heinrichs U; Kozerke S; Utting JF; Kob M; Butenweg C; Boesiger P; Niendorf T
    Invest Radiol; 2009 Sep; 44(9):539-47. PubMed ID: 19652614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuroanatomy of the calf brain as revealed by high-resolution magnetic resonance imaging.
    Schmidt MJ; Pilatus U; Wigger A; Kramer M; Oelschläger HA
    J Morphol; 2009 Jun; 270(6):745-58. PubMed ID: 19123244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MR imaging of the posterior fossa structures of human embryos and fetuses.
    Nakayama T; Yamada R
    Radiat Med; 1999; 17(2):105-14. PubMed ID: 10399777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuroanatomy of the common dolphin (Delphinus delphis) as revealed by magnetic resonance imaging (MRI).
    Marino L; Sudheimer KD; Pabst DA; McLellan WA; Filsoof D; Johnson JI
    Anat Rec; 2002 Dec; 268(4):411-29. PubMed ID: 12420290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometrical accuracy of a 3-tesla magnetic resonance imaging unit in Gamma Knife surgery.
    Watanabe Y; Lee CK; Gerbi BJ
    J Neurosurg; 2006 Dec; 105 Suppl():190-3. PubMed ID: 18503355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the origin of the MR image phase contrast: an in vivo MR microscopy study of the rat brain at 14.1 T.
    Marques JP; Maddage R; Mlynarik V; Gruetter R
    Neuroimage; 2009 Jun; 46(2):345-52. PubMed ID: 19254768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhomogeneity of rat vertebrae trabecular architecture by high-field 3D mu-magnetic resonance imaging and variable threshold image segmentation.
    Palombarini M; Gombia M; Fantazzini P; Giardino R; Giavaresi G; Parrilli A; Vittur F; Guillot G
    J Magn Reson Imaging; 2009 Oct; 30(4):825-33. PubMed ID: 19787728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utility of postmortem magnetic resonance imaging in clinical neuropathology.
    Boyko OB; Alston SR; Fuller GN; Hulette CM; Johnson GA; Burger PC
    Arch Pathol Lab Med; 1994 Mar; 118(3):219-25. PubMed ID: 8135623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic resonance imaging and cross-sectional anatomy of the normal bovine tarsus.
    Ehlert A; Ferguson J; Gerlach K
    Anat Histol Embryol; 2011 Jun; 40(3):234-40. PubMed ID: 21426377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro MRI of the mouse brain using a novel 400 MHz cryogenic quadrature RF probe.
    Baltes C; Radzwill N; Bosshard S; Marek D; Rudin M
    NMR Biomed; 2009 Oct; 22(8):834-42. PubMed ID: 19536757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 11.7 Tesla magnetic resonance microimaging of laryngeal tissue architecture.
    Herrera VL; Viereck JC; Lopez-Guerra G; Kumai Y; Kobler J; Karajanagi S; Park H; Hillman R; Zeitels SM
    Laryngoscope; 2009 Nov; 119(11):2187-94. PubMed ID: 19824052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-tesla MR imaging of the knee.
    Magee T
    Magn Reson Imaging Clin N Am; 2007 Feb; 15(1):125-32. PubMed ID: 17499185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphic and movie illustrations of human prenatal development and their application to embryological education based on the human embryo specimens in the Kyoto collection.
    Yamada S; Uwabe C; Nakatsu-Komatsu T; Minekura Y; Iwakura M; Motoki T; Nishimiya K; Iiyama M; Kakusho K; Minoh M; Mizuta S; Matsuda T; Matsuda Y; Haishi T; Kose K; Fujii S; Shiota K
    Dev Dyn; 2006 Feb; 235(2):468-77. PubMed ID: 16317724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implanted deep brain stimulator and 1.0-Tesla magnetic resonance imaging.
    Kovacs N; Nagy F; Kover F; Feldmann A; Llumiguano C; Janszky J; Kotek G; Doczi T; Balas I
    J Magn Reson Imaging; 2006 Dec; 24(6):1409-12. PubMed ID: 17083120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic magnetic resonance imaging of the brain: voxel localisation and tissue segmentation in the follow up of brain tumour.
    Poloni G; Bastianello S; Vultaggio A; Pozzi S; Maccabelli G; Germani G; Chiarati P; Pichiecchio A
    Funct Neurol; 2008; 23(4):207-13. PubMed ID: 19331784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic segmentation of intra-abdominal and subcutaneous adipose tissue in 3D whole mouse MRI.
    Ranefall P; Bidar AW; Hockings PD
    J Magn Reson Imaging; 2009 Sep; 30(3):554-60. PubMed ID: 19711401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation of magnetic resonance images with anatomic features of the equine tarsus.
    Latorre R; Arencibia A; Gil F; Rivero M; Henry RW; Ramírez G; Váquez JM
    Am J Vet Res; 2006 May; 67(5):756-61. PubMed ID: 16649906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional reconstruction of stained histological slices and 3D non-linear registration with in-vivo MRI for whole baboon brain.
    Dauguet J; Delzescaux T; Condé F; Mangin JF; Ayache N; Hantraye P; Frouin V
    J Neurosci Methods; 2007 Aug; 164(1):191-204. PubMed ID: 17560659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.