BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

35 related articles for article (PubMed ID: 1970994)

  • 1. Effects of Tryptophan and Tyrosine on the Transformation of Monophenols in Chromophoric Dissolved Organic Matter Solutions: Enhance the Forward Transformation and Reduce the Reverse Transformation.
    Zhou R; Zhang X
    Environ Sci Technol; 2024 Jun; 58(23):10108-10115. PubMed ID: 38813774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trifluoromethylthiolation of Tryptophan and Tyrosine Derivatives: A Tool for Enhancing the Local Hydrophobicity of Peptides.
    Gregorc J; Lensen N; Chaume G; Iskra J; Brigaud T
    J Org Chem; 2023 Sep; 88(18):13169-13177. PubMed ID: 37672679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembled Materials Based on Fully Aromatic Peptides: The Impact of Tryptophan, Tyrosine, and Dopa Residues.
    Balasco N; Altamura D; Scognamiglio PL; Sibillano T; Giannini C; Morelli G; Vitagliano L; Accardo A; Diaferia C
    Langmuir; 2024 Jan; 40(2):1470-1486. PubMed ID: 38174846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An interesting possibility of forming special hole stepping stones with high-stacking aromatic rings in proteins: three-π five-electron and four-π seven-electron resonance bindings.
    Li X; Sun W; Qin X; Xie Y; Liu N; Luo X; Wang Y; Chen X
    RSC Adv; 2021 Aug; 11(43):26672-26682. PubMed ID: 35479969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional and protective hole hopping in metalloenzymes.
    Gray HB; Winkler JR
    Chem Sci; 2021 Nov; 12(42):13988-14003. PubMed ID: 34760183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting Tryptophan for Tagging Through Photo-induced Electron Transfer.
    Orellana NV; Taylor MT
    Synlett; 2021; 32(14):1371-1378. PubMed ID: 34413573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reassignment of the Structure of a Tryptophan-Containing Cyclic Tripeptide Produced by the Biarylitide Crosslinking Cytochrome P450
    Coe LJ; Zhao Y; Padva L; Keto A; Schittenhelm R; Tailhades J; Pierens G; Krenske EH; Crüsemann M; De Voss JJ; Cryle MJ
    Chemistry; 2024 May; ():e202400988. PubMed ID: 38712638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photo- and Radiation-Induced One-Electron Oxidation of Methionine in Various Structural Environments Studied by Time-Resolved Techniques.
    Marciniak B; Bobrowski K
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein Dimerization via Tyr Residues: Highlight of a Slow Process with Co-Existence of Numerous Intermediates and Final Products.
    Gatin A; Duchambon P; Rest GV; Billault I; Sicard-Roselli C
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initiation and Prevention of Biological Damage by Radiation-Generated Protein Radicals.
    Gebicki JM; Nauser T
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral Probe for Electron Transfer and Addition Reactions of Azide Radicals with Substituted Quinoxalin-2-Ones in Aqueous Solutions.
    Skotnicki K; Ostrowski S; Dobrowolski JC; Fuente JR; Cañete A; Bobrowski K
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33435233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Susceptibility of Protein Methionine Oxidation in Response to Hydrogen Peroxide Treatment-Ex Vivo Versus In Vitro: A Computational Insight.
    Aledo JC; Aledo P
    Antioxidants (Basel); 2020 Oct; 9(10):. PubMed ID: 33066324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superoxide-mediated formation of tyrosine hydroperoxides and methionine sulfoxide in peptides through radical addition and intramolecular oxygen transfer.
    Nagy P; Kettle AJ; Winterbourn CC
    J Biol Chem; 2009 May; 284(22):14723-33. PubMed ID: 19297319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of neighboring methionine residue on tyrosine nitration and oxidation in peptides treated with MPO, H2O2, and NO2(-) or peroxynitrite and bicarbonate: role of intramolecular electron transfer mechanism?
    Zhang H; Zielonka J; Sikora A; Joseph J; Xu Y; Kalyanaraman B
    Arch Biochem Biophys; 2009 Apr; 484(2):134-45. PubMed ID: 19056332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intramolecular electron transfer in peptides containing methionine, tryptophan and tyrosine: a pulse radiolysis study.
    Bobrowski K; Wierzchowski KL; Holcman J; Ciurak M
    Int J Radiat Biol; 1990 May; 57(5):919-32. PubMed ID: 1970994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulse radiolysis studies of intramolecular electron transfer in model peptides and proteins. IV. Met/S:.Br-->Tyr/O. radical transformation in aqueous solution of H-Tyr-(Pro)n-Met-OH peptides.
    Bobrowski K; Wierzchowski KL; Holcman J; Ciurak M
    Int J Radiat Biol; 1992 Nov; 62(5):507-16. PubMed ID: 1361508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulse radiolysis studies of intramolecular electron transfer in model peptides and proteins. 7. Trp-->TyrO radical transformation in hen egg-white lysozyme. Effects of pH, temperature, Trp62 oxidation and inhibitor binding.
    Bobrowski K; Holcman J; Poznanski J; Wierzchowski KL
    Biophys Chem; 1997 Jan; 63(2-3):153-66. PubMed ID: 9108690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methionyl----tyrosyl radical transitions initiated by Br2-. in peptide model systems and ribonuclease A.
    Prütz WA; Butler J; Land EJ
    Int J Radiat Biol Relat Stud Phys Chem Med; 1985 Feb; 47(2):149-56. PubMed ID: 3872270
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.