BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 19709985)

  • 1. [Surgical robotics in neurosurgery].
    Haidegger T; Benyó Z
    Orv Hetil; 2009 Sep; 150(36):1701-11. PubMed ID: 19709985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A telerobotic haptic system for minimally invasive stereotactic neurosurgery.
    Rossi A; Trevisani A; Zanotto V
    Int J Med Robot; 2005 Jan; 1(2):64-75. PubMed ID: 17518380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robotic skull base surgery via supraorbital keyhole approach: a cadaveric study.
    Hong WC; Tsai JC; Chang SD; Sorger JM
    Neurosurgery; 2013 Jan; 72 Suppl 1():33-8. PubMed ID: 23254810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patient motion tracking in the presence of measurement errors.
    Haidegger T; Benyó Z; Kazanzides P
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5563-6. PubMed ID: 19964394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The application accuracy of the NeuroMate robot--A quantitative comparison with frameless and frame-based surgical localization systems.
    Li QH; Zamorano L; Pandya A; Perez R; Gong J; Diaz F
    Comput Aided Surg; 2002; 7(2):90-8. PubMed ID: 12112718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An image-guided magnetic resonance-compatible surgical robot.
    Sutherland GR; Latour I; Greer AD; Fielding T; Feil G; Newhook P
    Neurosurgery; 2008 Feb; 62(2):286-92; discussion 292-3. PubMed ID: 18382307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Results of using Spine Assist Mazor in surgical treatment of spine disorders.
    Dreval' ON; Rynkov IP; Kasparova KA; Bruskin A; Aleksandrovskiĭ V; Zil'bernshteĭn V
    Zh Vopr Neirokhir Im N N Burdenko; 2014; 78(3):14-20. PubMed ID: 25146652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Efficiency, risks, and advantages of using robotic support systems in interventional medicine].
    Feussner H; Can S; Fiolka A; Schneider A; Wilhelm D
    Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz; 2010 Aug; 53(8):831-8. PubMed ID: 20700783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Master-slave robotic platform and its feasibility study for micro-neurosurgery.
    Mitsuishi M; Morita A; Sugita N; Sora S; Mochizuki R; Tanimoto K; Baek YM; Takahashi H; Harada K
    Int J Med Robot; 2013 Jun; 9(2):180-9. PubMed ID: 22588785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a completely robotized neurosurgical operating microscope.
    Kantelhardt SR; Finke M; Schweikard A; Giese A
    Neurosurgery; 2013 Jan; 72 Suppl 1():19-26. PubMed ID: 23254808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A robotic assistant for stereotactic neurosurgery on small animals.
    Ramrath L; Hofmann UG; Schweikard A
    Int J Med Robot; 2008 Dec; 4(4):295-303. PubMed ID: 18956415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Miniature robotic guidance for spine surgery--introduction of a novel system and analysis of challenges encountered during the clinical development phase at two spine centres.
    Barzilay Y; Liebergall M; Fridlander A; Knoller N
    Int J Med Robot; 2006 Jun; 2(2):146-53. PubMed ID: 17520625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robotic surgery systems.
    Dondelinger R
    Biomed Instrum Technol; 2014; 48(1):55-9. PubMed ID: 24548037
    [No Abstract]   [Full Text] [Related]  

  • 14. Advancing neurosurgery with image-guided robotics.
    Pandya S; Motkoski JW; Serrano-Almeida C; Greer AD; Latour I; Sutherland GR
    J Neurosurg; 2009 Dec; 111(6):1141-9. PubMed ID: 19374495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technology advances in hospital practices: robotics in treatment of patients.
    Rosiek A; Leksowski K
    Technol Cancer Res Treat; 2015 Jun; 14(3):270-6. PubMed ID: 25782187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robotics in keyhole transcranial endoscope-assisted microsurgery: a critical review of existing systems and proposed specifications for new robotic platforms.
    Marcus HJ; Seneci CA; Payne CJ; Nandi D; Darzi A; Yang GZ
    Neurosurgery; 2014 Mar; 10 Suppl 1():84-95; discussion 95-6. PubMed ID: 23921708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of the PathFinder neurosurgical robot using a phantom.
    Eljamel MS
    Int J Med Robot; 2007 Dec; 3(4):372-7. PubMed ID: 17914750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robotics in neurosurgery.
    McBeth PB; Louw DF; Rizun PR; Sutherland GR
    Am J Surg; 2004 Oct; 188(4A Suppl):68S-75S. PubMed ID: 15476655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using simulation to design control strategies for robotic no-scar surgery.
    De Donno A; Nageotte F; Zanne P; Goffin L; de Mathelin M
    Stud Health Technol Inform; 2013; 184():117-21. PubMed ID: 23400142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated system for planning, navigation and robotic assistance for skull base surgery.
    Xia T; Baird C; Jallo G; Hayes K; Nakajima N; Hata N; Kazanzides P
    Int J Med Robot; 2008 Dec; 4(4):321-30. PubMed ID: 18803337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.