These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 19710008)

  • 1. Two lysine residues in the bacterial luciferase mobile loop stabilize reaction intermediates.
    Campbell ZT; Baldwin TO
    J Biol Chem; 2009 Nov; 284(47):32827-34. PubMed ID: 19710008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic destabilization of the hydroperoxy flavin intermediate by site-directed modification of the reactive thiol in bacterial luciferase.
    Abu-Soud HM; Clark AC; Francisco WA; Baldwin TO; Raushel FM
    J Biol Chem; 1993 Apr; 268(11):7699-706. PubMed ID: 8463299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional roles of conserved residues in the unstructured loop of Vibrio harveyi bacterial luciferase.
    Low JC; Tu SC
    Biochemistry; 2002 Feb; 41(6):1724-31. PubMed ID: 11827516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between the conserved alpha subunit arginine 107 and effects of phosphate on the activity and stability of Vibrio harveyi luciferase.
    Moore C; Lei B; Tu SC
    Arch Biochem Biophys; 1999 Oct; 370(1):45-50. PubMed ID: 10496975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tryptophan 250 on the alpha subunit plays an important role in flavin and aldehyde binding to bacterial luciferase. Effects of W-->Y mutations on catalytic function.
    Li Z; Meighen EA
    Biochemistry; 1995 Nov; 34(46):15084-90. PubMed ID: 7578121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic mechanism of luciferase subunit folding and assembly.
    Clark AC; Raso SW; Sinclair JF; Ziegler MM; Chaffotte AF; Baldwin TO
    Biochemistry; 1997 Feb; 36(7):1891-9. PubMed ID: 9048575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional implications of the unstructured loop in the (beta/alpha)(8) barrel structure of the bacterial luciferase alpha subunit.
    Sparks JM; Baldwin TO
    Biochemistry; 2001 Dec; 40(50):15436-43. PubMed ID: 11735428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implications of the reactive thiol and the proximal non-proline cis-peptide bond in the Structure and function of Vibrio harveyi luciferase.
    Lin LY; Sulea T; Szittner R; Kor C; Purisima EO; Meighen EA
    Biochemistry; 2002 Aug; 41(31):9938-45. PubMed ID: 12146958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of folding steps involving the individual subunits of bacterial luciferase to the assembly of the active heterodimeric enzyme.
    Baldwin TO; Ziegler MM; Chaffotte AF; Goldberg ME
    J Biol Chem; 1993 May; 268(15):10766-72. PubMed ID: 8496143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase.
    Harris TK; Wu G; Massiah MA; Mildvan AS
    Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. beta-Cystathionase from Bordetella avium. Role(s) of lysine 214 and cysteine residues in activity and cytotoxicity.
    Gentry-Weeks CR; Spokes J; Thompson J
    J Biol Chem; 1995 Mar; 270(13):7695-702. PubMed ID: 7706318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of aldehyde inhibition of Vibrio harveyi luciferase. Identification of two aldehyde sites and relationship between aldehyde and flavin binding.
    Lei B; Cho KW; Tu SC
    J Biol Chem; 1994 Feb; 269(8):5612-8. PubMed ID: 8119897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Random and site-directed mutagenesis of bacterial luciferase: investigation of the aldehyde binding site.
    Chen LH; Baldwin TO
    Biochemistry; 1989 Mar; 28(6):2684-9. PubMed ID: 2730882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactate monooxygenase. I. Expression of the mycobacterial gene in Escherichia coli and site-directed mutagenesis of lysine 266.
    Müh U; Massey V; Williams CH
    J Biol Chem; 1994 Mar; 269(11):7982-8. PubMed ID: 8132518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the kinetics and emission spectrum on mutation of the chromophore-binding platform in Vibrio harveyi luciferase.
    Lin LY; Szittner R; Friedman R; Meighen EA
    Biochemistry; 2004 Mar; 43(11):3183-94. PubMed ID: 15023068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutational analysis of the subunit interface of Vibrio harveyi bacterial luciferase.
    Inlow JK; Baldwin TO
    Biochemistry; 2002 Mar; 41(12):3906-15. PubMed ID: 11900533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purified native subunits of bacterial luciferase are active in the bioluminescence reaction but fail to assemble into the alpha beta structure.
    Sinclair JF; Waddle JJ; Waddill EF; Baldwin TO
    Biochemistry; 1993 May; 32(19):5036-44. PubMed ID: 8494880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional consequences of site-directed mutation of conserved histidyl residues of the bacterial luciferase alpha subunit.
    Xin X; Xi L; Tu SC
    Biochemistry; 1991 Nov; 30(47):11255-62. PubMed ID: 1958663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of the bacterial luciferase/flavin complex provides insight into the function of the beta subunit.
    Campbell ZT; Weichsel A; Montfort WR; Baldwin TO
    Biochemistry; 2009 Jul; 48(26):6085-94. PubMed ID: 19435287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational analysis of the oxygen addition at the C4a site of reduced flavin in the bacterial luciferase bioluminescence reaction.
    Wada N; Sugimoto T; Watanabe H; Tu SC
    Photochem Photobiol; 1999 Jul; 70(1):116-22. PubMed ID: 10420850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.