These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 19710020)

  • 1. A single amino acid substitution converts benzophenone synthase into phenylpyrone synthase.
    Klundt T; Bocola M; Lütge M; Beuerle T; Liu B; Beerhues L
    J Biol Chem; 2009 Nov; 284(45):30957-64. PubMed ID: 19710020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benzophenone synthase and chalcone synthase from Hypericum androsaemum cell cultures: cDNA cloning, functional expression, and site-directed mutagenesis of two polyketide synthases.
    Liu B; Falkenstein-Paul H; Schmidt W; Beerhues L
    Plant J; 2003 Jun; 34(6):847-55. PubMed ID: 12795704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of biphenyls and benzophenones--evolution of benzoic acid-specific type III polyketide synthases in plants.
    Beerhues L; Liu B
    Phytochemistry; 2009; 70(15-16):1719-27. PubMed ID: 19699497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The crystal structure of benzophenone synthase from Garcinia mangostana L. pericarps reveals the basis for substrate specificity and catalysis.
    Songsiriritthigul C; Nualkaew N; Ketudat-Cairns J; Chen CJ
    Acta Crystallogr F Struct Biol Commun; 2020 Dec; 76(Pt 12):597-603. PubMed ID: 33263571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benzophenone synthase from Garcinia mangostana L. pericarps.
    Nualkaew N; Morita H; Shimokawa Y; Kinjo K; Kushiro T; De-Eknamkul W; Ebizuka Y; Abe I
    Phytochemistry; 2012 May; 77():60-9. PubMed ID: 22390826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular architectures of benzoic acid-specific type III polyketide synthases.
    Stewart C; Woods K; Macias G; Allan AC; Hellens RP; Noel JP
    Acta Crystallogr D Struct Biol; 2017 Dec; 73(Pt 12):1007-1019. PubMed ID: 29199980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alteration of reaction and substrate specificity of a bacterial type III polyketide synthase by site-directed mutagenesis.
    Funa N; Ohnishi Y; Ebizuka Y; Horinouchi S
    Biochem J; 2002 Nov; 367(Pt 3):781-9. PubMed ID: 12139488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active site residues governing substrate selectivity and polyketide chain length in aloesone synthase.
    Abe I; Watanabe T; Lou W; Noguchi H
    FEBS J; 2006 Jan; 273(1):208-18. PubMed ID: 16367761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A promiscuous coenzyme A ligase provides benzoyl-coenzyme A for xanthone biosynthesis in Hypericum.
    Singh P; Preu L; Beuerle T; Kaufholdt D; Hänsch R; Beerhues L; Gaid M
    Plant J; 2020 Dec; 104(6):1472-1490. PubMed ID: 33031578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of the hyperforin skeleton in Hypericum calycinum cell cultures.
    Klingauf P; Beuerle T; Mellenthin A; El-Moghazy SA; Boubakir Z; Beerhues L
    Phytochemistry; 2005 Jan; 66(2):139-45. PubMed ID: 15652570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural control of polyketide formation in plant-specific polyketide synthases.
    Jez JM; Austin MB; Ferrer J; Bowman ME; Schröder J; Noel JP
    Chem Biol; 2000 Dec; 7(12):919-30. PubMed ID: 11137815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternative pathways of xanthone biosynthesis in cell cultures of Hypericum androsaemum L.
    Schmidt W; Beerhues L
    FEBS Lett; 1997 Dec; 420(2-3):143-6. PubMed ID: 9459298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered biosynthesis of plant polyketides: structure-based and precursor-directed approach.
    Abe I
    Top Curr Chem; 2010; 297():45-66. PubMed ID: 21495256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An acridone-producing novel multifunctional type III polyketide synthase from Huperzia serrata.
    Wanibuchi K; Zhang P; Abe T; Morita H; Kohno T; Chen G; Noguchi H; Abe I
    FEBS J; 2007 Feb; 274(4):1073-82. PubMed ID: 17250741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of a type III polyketide synthase involved in quinolone alkaloid biosynthesis from Aegle marmelos Correa.
    Resmi MS; Verma P; Gokhale RS; Soniya EV
    J Biol Chem; 2013 Mar; 288(10):7271-81. PubMed ID: 23329842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Starter substrate specificities of wild-type and mutant polyketide synthases from Rutaceae.
    Lukacin R; Schreiner S; Silber K; Matern U
    Phytochemistry; 2005 Feb; 66(3):277-84. PubMed ID: 15680984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential expression of benzophenone synthase and chalcone synthase in Hypericum sampsonii.
    Huang L; Wang H; Ye H; Du Z; Zhang Y; Beerhues L; Liu B
    Nat Prod Commun; 2012 Dec; 7(12):1615-8. PubMed ID: 23413566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase.
    Jez JM; Ferrer JL; Bowman ME; Dixon RA; Noel JP
    Biochemistry; 2000 Feb; 39(5):890-902. PubMed ID: 10653632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A plant type III polyketide synthase that produces pentaketide chromone.
    Abe I; Utsumi Y; Oguro S; Morita H; Sano Y; Noguchi H
    J Am Chem Soc; 2005 Feb; 127(5):1362-3. PubMed ID: 15686354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotransformation of Benzoate to 2,4,6-Trihydroxybenzophenone by Engineered
    Klamrak A; Nabnueangsap J; Nualkaew N
    Molecules; 2021 May; 26(9):. PubMed ID: 34066831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.