BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 19710626)

  • 1. Combining QD-FRET and microfluidics to monitor DNA nanocomplex self-assembly in real-time.
    Ho YP; Chen HH; Leong KW; Wang TH
    J Vis Exp; 2009 Aug; (30):. PubMed ID: 19710626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The convergence of quantum-dot-mediated fluorescence resonance energy transfer and microfluidics for monitoring DNA polyplex self-assembly in real time.
    Ho YP; Chen HH; Leong KW; Wang TH
    Nanotechnology; 2009 Mar; 20(9):095103. PubMed ID: 19417478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the intracellular stability and unpacking of DNA nanocomplexes by quantum dots-FRET.
    Ho YP; Chen HH; Leong KW; Wang TH
    J Control Release; 2006 Nov; 116(1):83-9. PubMed ID: 17081642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative comparison of intracellular unpacking kinetics of polyplexes by a model constructed from quantum dot-FRET.
    Chen HH; Ho YP; Jiang X; Mao HQ; Wang TH; Leong KW
    Mol Ther; 2008 Feb; 16(2):324-32. PubMed ID: 18180773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning physical properties of nanocomplexes through microfluidics-assisted confinement.
    Ho YP; Grigsby CL; Zhao F; Leong KW
    Nano Lett; 2011 May; 11(5):2178-82. PubMed ID: 21506589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of smart nanoparticle-aptamer sensing technology.
    Zhang H; Stockley PG; Zhou D
    Faraday Discuss; 2011; 149():319-32; discussion 333-56. PubMed ID: 21413189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of Intracellular Quantum Dot to Fluorescent Protein Förster Resonance Energy Transfer via Customized Ligands and Spatial Control of Donor-Acceptor Assembly.
    Field LD; Walper SA; Susumu K; Oh E; Medintz IL; Delehanty JB
    Sensors (Basel); 2015 Dec; 15(12):30457-68. PubMed ID: 26690153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous Non-invasive Analysis of DNA Condensation and Stability by Two-step QD-FRET.
    Chen HH; Ho YP; Jiang X; Mao HQ; Wang TH; Leong KW
    Nano Today; 2009 Apr; 4(2):125-134. PubMed ID: 20161048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward a solid-phase nucleic acid hybridization assay within microfluidic channels using immobilized quantum dots as donors in fluorescence resonance energy transfer.
    Chen L; Algar WR; Tavares AJ; Krull UJ
    Anal Bioanal Chem; 2011 Jan; 399(1):133-41. PubMed ID: 20978748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing.
    Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL
    J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic preparation of polymer-nucleic acid nanocomplexes improves nonviral gene transfer.
    Grigsby CL; Ho YP; Lin C; Engbersen JF; Leong KW
    Sci Rep; 2013 Nov; 3():3155. PubMed ID: 24193511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding nonviral nucleic acid delivery with quantum dot-FRET nanosensors.
    Grigsby CL; Ho YP; Leong KW
    Nanomedicine (Lond); 2012 Apr; 7(4):565-77. PubMed ID: 22471720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FRET-labeled siRNA probes for tracking assembly and disassembly of siRNA nanocomplexes.
    Alabi CA; Love KT; Sahay G; Stutzman T; Young WT; Langer R; Anderson DG
    ACS Nano; 2012 Jul; 6(7):6133-41. PubMed ID: 22693946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum dot/carrier-protein/haptens conjugate as a detection nanobioprobe for FRET-based immunoassay of small analytes with all-fiber microfluidic biosensing platform.
    Long F; Gu C; Gu AZ; Shi H
    Anal Chem; 2012 Apr; 84(8):3646-53. PubMed ID: 22455400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer.
    Lu H; Schöps O; Woggon U; Niemeyer CM
    J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-phase supports for the in situ assembly of quantum dot-FRET hybridization assays in channel microfluidics.
    Tavares AJ; Noor MO; Uddayasankar U; Krull UJ; Vannoy CH
    Methods Mol Biol; 2014; 1199():241-55. PubMed ID: 25103813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-gated FRET nanoassemblies for rapid and sensitive intra- and extracellular fluorescence imaging.
    Afsari HS; Cardoso Dos Santos M; Lindén S; Chen T; Qiu X; van Bergen En Henegouwen PM; Jennings TL; Susumu K; Medintz IL; Hildebrandt N; Miller LW
    Sci Adv; 2016 Jun; 2(6):e1600265. PubMed ID: 27386579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput Fabrication of Nanocomplexes Using 3D-Printed Micromixers.
    Bohr A; Boetker J; Wang Y; Jensen H; Rantanen J; Beck-Broichsitter M
    J Pharm Sci; 2017 Mar; 106(3):835-842. PubMed ID: 27938892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface ligand effects on metal-affinity coordination to quantum dots: implications for nanoprobe self-assembly.
    Dennis AM; Sotto DC; Mei BC; Medintz IL; Mattoussi H; Bao G
    Bioconjug Chem; 2010 Jul; 21(7):1160-70. PubMed ID: 20568725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum dot-based fluorescence resonance energy transfer with improved FRET efficiency in capillary flows.
    Zhang CY; Johnson LW
    Anal Chem; 2006 Aug; 78(15):5532-7. PubMed ID: 16878892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.