BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 19710648)

  • 1. Reconnecting injured nerves.
    Cho M
    Nat Neurosci; 2009 Sep; 12(9):1085. PubMed ID: 19710648
    [No Abstract]   [Full Text] [Related]  

  • 2. Transplants of fibroblasts expressing BDNF and NT-3 promote recovery of bladder and hindlimb function following spinal contusion injury in rats.
    Mitsui T; Fischer I; Shumsky JS; Murray M
    Exp Neurol; 2005 Aug; 194(2):410-31. PubMed ID: 16022868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guiding regenerating axons to their brainstem targets.
    Dempsey RJ
    Neurosurgery; 2009 Dec; 65(6):N11. PubMed ID: 19934950
    [No Abstract]   [Full Text] [Related]  

  • 4. Improved axonal regeneration of transected spinal cord mediated by multichannel collagen conduits functionalized with neurotrophin-3 gene.
    Yao L; Daly W; Newland B; Yao S; Wang W; Chen BK; Madigan N; Windebank A; Pandit A
    Gene Ther; 2013 Dec; 20(12):1149-57. PubMed ID: 23883961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Axon regeneration through scars and into sites of chronic spinal cord injury.
    Lu P; Jones LL; Tuszynski MH
    Exp Neurol; 2007 Jan; 203(1):8-21. PubMed ID: 17014846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury.
    Alto LT; Havton LA; Conner JM; Hollis ER; Blesch A; Tuszynski MH
    Nat Neurosci; 2009 Sep; 12(9):1106-13. PubMed ID: 19648914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regenerating motor bridge axons refine connections and synapse on lumbar motoneurons to bypass chronic spinal cord injury.
    Campos LW; Chakrabarty S; Haque R; Martin JH
    J Comp Neurol; 2008 Feb; 506(5):838-50. PubMed ID: 18076081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graft of pre-injured sural nerve promotes regeneration of corticospinal tract and functional recovery in rats with chronic spinal cord injury.
    Feng SQ; Zhou XF; Rush RA; Ferguson IA
    Brain Res; 2008 May; 1209():40-8. PubMed ID: 18405884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bridge over troubled waters.
    Campos L; Ambron RT; Martin JH
    Neuroreport; 2004 Dec; 15(18):2691-4. PubMed ID: 15597036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of bone marrow-derived mononuclear cells on nerve regeneration in the transection model of the rat sciatic nerve.
    Goel RK; Suri V; Suri A; Sarkar C; Mohanty S; Sharma MC; Yadav PK; Srivastava A
    J Clin Neurosci; 2009 Sep; 16(9):1211-7. PubMed ID: 19596581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle injection of AAV-NT3 promotes anatomical reorganization of CST axons and improves behavioral outcome following SCI.
    Fortun J; Puzis R; Pearse DD; Gage FH; Bunge MB
    J Neurotrauma; 2009 Jul; 26(7):941-53. PubMed ID: 19275471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Candidate cells for transplantation into the injured CNS.
    Fischer I
    Prog Brain Res; 2000; 128():253-7. PubMed ID: 11105684
    [No Abstract]   [Full Text] [Related]  

  • 13. Restoring function to the injured human spinal cord.
    Borgens RB
    Adv Anat Embryol Cell Biol; 2003; 171():III-IV, 1-155. PubMed ID: 12793206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurotrophin 3 improves delayed reconstruction of sensory pathways after cervical dorsal root injury.
    Liu S; Blanchard S; Bigou S; Vitry S; Bohl D; Heard JM
    Neurosurgery; 2011 Feb; 68(2):450-61; discussion 461. PubMed ID: 21135740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurotrophin-3 expressed in situ induces axonal plasticity in the adult injured spinal cord.
    Zhou L; Baumgartner BJ; Hill-Felberg SJ; McGowen LR; Shine HD
    J Neurosci; 2003 Feb; 23(4):1424-31. PubMed ID: 12598631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined use of spinal cord-mimicking partition type scaffold architecture and neurotrophin-3 for surgical repair of completely transected spinal cord in rats.
    Wang X; Li Y; Gao Y; Chen X; Yao J; Lin W; Chen Y; Liu J; Yang Y; Wang X
    J Biomater Sci Polym Ed; 2013; 24(8):927-39. PubMed ID: 23647249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transplantation of olfactory mucosa following spinal cord injury promotes recovery in rats.
    Iwatsuki K; Yoshimine T; Kishima H; Aoki M; Yoshimura K; Ishihara M; Ohnishi Y; Lima C
    Neuroreport; 2008 Aug; 19(13):1249-52. PubMed ID: 18695502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. F-wave amplitudes indicate evolving spinal autonomy during spontaneous recovery of hindlimb function in rat spinal cord contusion.
    Wedekind C; Ullrich R; Klug N
    Spinal Cord; 2006 Jan; 44(1):44-8. PubMed ID: 16010278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The effect of transcranial electrostimulation of the opioid structures of the brain on peripheral nerve regeneration in the rat].
    Akoev GN; Il'inskiĭ OB; Kolosova LI; Lebedev VP; Avelev VD; Petrova OG
    Neirofiziologiia; 1990; 22(1):76-9. PubMed ID: 2159599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinal cord repair. A question of making it work.
    Björklund A
    Nature; 1994 Jan; 367(6459):112-3. PubMed ID: 8114906
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.