BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 19710648)

  • 21. Effects of electrical stimulation at different frequencies on regeneration of transected peripheral nerve.
    Lu MC; Ho CY; Hsu SF; Lee HC; Lin JH; Yao CH; Chen YS
    Neurorehabil Neural Repair; 2008; 22(4):367-73. PubMed ID: 18663248
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Repair of spinal cord injury by transplantation of olfactory ensheathing cells.
    Raisman G
    C R Biol; 2007; 330(6-7):557-60. PubMed ID: 17631453
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Effects of cryopreserved neural stem cells transplantation on rat axonal regeneration after spinal cord injury].
    Wang YF; Lü G; Xu WB; Jin Z; Huang T
    Zhongguo Gu Shang; 2008 Jun; 21(6):427-9. PubMed ID: 19108425
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Therapeutic approaches to promoting axonal regeneration in the adult mammalian spinal cord.
    Hannila SS; Siddiq MM; Filbin MT
    Int Rev Neurobiol; 2007; 77():57-105. PubMed ID: 17178472
    [No Abstract]   [Full Text] [Related]  

  • 25. Peripheral nerve grafts in a spinal cord prosthesis result in regeneration and motor evoked potentials following spinal cord resection.
    Nordblom J; Persson JK; Svensson M; Mattsson P
    Restor Neurol Neurosci; 2009; 27(4):285-95. PubMed ID: 19738322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Cervical spinal cord injuries and respiratory insufficiency: a revolutionary treatment?].
    Vinit S
    Med Sci (Paris); 2012 Jan; 28(1):33-6. PubMed ID: 22289826
    [No Abstract]   [Full Text] [Related]  

  • 27. [Recovery of the spinal function: current potentialities and research prospects].
    Shevelev IN; Baskov AV; Iarikov DE; Borshchenko IA
    Zh Vopr Neirokhir Im N N Burdenko; 2000; (3):35-9. PubMed ID: 11221343
    [No Abstract]   [Full Text] [Related]  

  • 28. [Strategies to repair lost sensory connections to the spinal cord].
    Kozlova EN
    Mol Biol (Mosk); 2008; 42(5):820-9. PubMed ID: 18988531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Short-circuit recovery from spinal injury.
    Stelzner DJ
    Nat Med; 2008 Jan; 14(1):19-20. PubMed ID: 18180714
    [No Abstract]   [Full Text] [Related]  

  • 30. Human embryonic stem cell-derived neural precursor transplants in collagen scaffolds promote recovery in injured rat spinal cord.
    Hatami M; Mehrjardi NZ; Kiani S; Hemmesi K; Azizi H; Shahverdi A; Baharvand H
    Cytotherapy; 2009; 11(5):618-30. PubMed ID: 19548142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transplantation of embryonic neurones to replace missing spinal motoneurones.
    Nógrádi A; Szabó A
    Restor Neurol Neurosci; 2008; 26(2-3):215-23. PubMed ID: 18820412
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recovery from spinal cord injury: regeneration, plasticity and rehabilitation.
    Fawcett JW
    Brain; 2009 Jun; 132(Pt 6):1417-8. PubMed ID: 19429905
    [No Abstract]   [Full Text] [Related]  

  • 33. Overexpression of Bcl-XL in human neural stem cells promotes graft survival and functional recovery following transplantation in spinal cord injury.
    Lee SI; Kim BG; Hwang DH; Kim HM; Kim SU
    J Neurosci Res; 2009 Nov; 87(14):3186-97. PubMed ID: 19530162
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stem cell spinal cord regeneration: first do no harm.
    Legge M; Jones LM
    J Med Ethics; 2008 Dec; 34(12):838-9. PubMed ID: 19043104
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional restoration of rabbit spinal cord using collagen-filament scaffold.
    Yoshii S; Ito S; Shima M; Taniguchi A; Akagi M
    J Tissue Eng Regen Med; 2009 Jan; 3(1):19-25. PubMed ID: 19012267
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influences of mechanical properties and permeability on chitosan nano/microfiber mesh tubes as a scaffold for nerve regeneration.
    Wang W; Itoh S; Matsuda A; Ichinose S; Shinomiya K; Hata Y; Tanaka J
    J Biomed Mater Res A; 2008 Feb; 84(2):557-66. PubMed ID: 17941013
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Embryonic and adult stem cells promote raphespinal axon outgrowth and improve functional outcome following spinal hemisection in mice.
    Boido M; Rupa R; Garbossa D; Fontanella M; Ducati A; Vercelli A
    Eur J Neurosci; 2009 Sep; 30(5):833-46. PubMed ID: 19712091
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Peripheral nerve regeneration by transplantation of BMSC-derived Schwann cells as chitosan gel sponge scaffolds.
    Ishikawa N; Suzuki Y; Dezawa M; Kataoka K; Ohta M; Cho H; Ide C
    J Biomed Mater Res A; 2009 Jun; 89(4):1118-24. PubMed ID: 19343770
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [A method of detecting the ends of regenerating axons in experimental nerve injury].
    Laskov VB; Krasnoborod'ko LS
    Patol Fiziol Eksp Ter; 1986; (6):79. PubMed ID: 3822545
    [No Abstract]   [Full Text] [Related]  

  • 40. Implantation of neural stem cells embedded in hyaluronic acid and collagen composite conduit promotes regeneration in a rabbit facial nerve injury model.
    Zhang H; Wei YT; Tsang KS; Sun CR; Li J; Huang H; Cui FZ; An YH
    J Transl Med; 2008 Nov; 6():67. PubMed ID: 18986538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.