These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 19710827)

  • 1. Pulse-energy statistics in stimulated Raman scattering.
    Raymer MG; Rzaçzewski K; Mostowski J
    Opt Lett; 1982 Feb; 7(2):71-3. PubMed ID: 19710827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum random bit generation using energy fluctuations in stimulated Raman scattering.
    Bustard PJ; England DG; Nunn J; Moffatt D; Spanner M; Lausten R; Sussman BJ
    Opt Express; 2013 Dec; 21(24):29350-7. PubMed ID: 24514488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intra-pulse Raman frequency shift versus conventional Stokes generation of diode laser pulses in optical fibers.
    Kuzin E; Mendoza-Vazquez S; Gutierrez-Gutierrez J; Ibarra-Escamilla B; Haus J; Rojas-Laguna R
    Opt Express; 2005 May; 13(9):3388-96. PubMed ID: 19495241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased Stokes pulse energy variation from amplified classical noise in a fiber Raman generator.
    Betlej A; Schmitt P; Sidereas P; Tracy R; Goedde C; Thompson J
    Opt Express; 2005 Apr; 13(8):2948-60. PubMed ID: 19495191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral quantum fluctuations in a stimulated Raman generator: a description in terms of temporally coherent modes.
    Walmsley IA
    Opt Lett; 1992 Mar; 17(6):435-7. PubMed ID: 19784352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extreme-value statistics in supercontinuum generation by cascaded stimulated Raman scattering.
    Aalto A; Genty G; Toivonen J
    Opt Express; 2010 Jan; 18(2):1234-9. PubMed ID: 20173946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ring-shaped backward stimulated Raman scattering driven by stimulated Brillouin scattering.
    Feng C; Diels JC; Xu X; Arissian L
    Opt Express; 2015 Jun; 23(13):17035-45. PubMed ID: 26191712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability.
    Aguergaray C; Runge A; Erkintalo M; Broderick NG
    Opt Lett; 2013 Aug; 38(15):2644-6. PubMed ID: 23903099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-Gaussian statistics and optical rogue waves in stimulated Raman scattering.
    Monfared YE; Ponomarenko SA
    Opt Express; 2017 Mar; 25(6):5941-5950. PubMed ID: 28381064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-beam double stimulated Raman scatterings: Cascading configuration.
    Rao BJ; Cho M
    J Chem Phys; 2018 Mar; 148(11):114201. PubMed ID: 29566530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-energy conversion efficiency of transient stimulated Raman scattering in methane pumped by the fundamental of a femtosecond Ti:sapphire laser.
    Koprinkov IG; Suda A; Wang P; Midorikawa K
    Opt Lett; 1999 Sep; 24(18):1308-10. PubMed ID: 18079789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-wave infrared picosecond parametric amplifier based on Raman shifter technology.
    Welch EC; Tochitsky SY; Pigeon JJ; Joshi C
    Opt Express; 2018 Mar; 26(5):5154-5163. PubMed ID: 29529723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solitonlike Stokes pulses in stimulated Raman scattering.
    Höök A; Anderson D; Lisak M
    Opt Lett; 1988 Dec; 13(12):1114-6. PubMed ID: 19746142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-beam double stimulated Raman scatterings.
    Cho M
    J Chem Phys; 2018 Jan; 148(1):014201. PubMed ID: 29306276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stokes-anti-Stokes correlations in diamond.
    Kasperczyk M; Jorio A; Neu E; Maletinsky P; Novotny L
    Opt Lett; 2015 May; 40(10):2393-6. PubMed ID: 26393748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly efficient picosecond diamond Raman laser at 1240 and 1485 nm.
    Warrier AM; Lin J; Pask HM; Mildren RP; Coutts DW; Spence DJ
    Opt Express; 2014 Feb; 22(3):3325-33. PubMed ID: 24663623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions.
    Lucht RP; Kinnius PJ; Roy S; Gord JR
    J Chem Phys; 2007 Jul; 127(4):044316. PubMed ID: 17672699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum theory of (femtosecond) time-resolved stimulated Raman scattering.
    Sun Z; Lu J; Zhang DH; Lee SY
    J Chem Phys; 2008 Apr; 128(14):144114. PubMed ID: 18412430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing silent vibration modes of nanomaterials by detecting anti-Stokes hyper-Raman scattering with femtosecond laser pulses.
    Zeng J; Chen L; Dai Q; Lan S; Tie S
    Nanoscale; 2016 Jan; 8(3):1572-9. PubMed ID: 26690965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bandwidth optimization of femtosecond pure-rotational coherent anti-Stokes Raman scattering by pump/Stokes spectral focusing.
    Kearney SP
    Appl Opt; 2014 Oct; 53(28):6579-85. PubMed ID: 25322247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.