These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 19710894)

  • 21. Reciprocal passive mode locking of a rhodamine 6G dye laser and the Ar(+) pump laser.
    Yasa ZA; Amer NM
    Opt Lett; 1981 Feb; 6(2):67-9. PubMed ID: 19701329
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generation of 5-W deep-UV continuous-wave radiation at 266 nm by an external cavity with a CsLiB6O10 crystal.
    Sakuma J; Asakawa Y; Obara M
    Opt Lett; 2004 Jan; 29(1):92-4. PubMed ID: 14719671
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generation of continuous-wave single-frequency 1.5 W 378 nm radiation by frequency doubling of a Ti:sapphire laser.
    Cha YH; Ko KH; Lim G; Han JM; Park HM; Kim TS; Jeong DY
    Appl Opt; 2010 Mar; 49(9):1666-70. PubMed ID: 20300165
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synchronously pumped continuous-wave dye laser pumped by a mode-locked frequency-doubled diode-pumped Nd:YLF laser.
    Malcolm GP; Ferguson AI
    Opt Lett; 1991 Jun; 16(11):814-6. PubMed ID: 19776794
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bichromatic frequency conversion in potassium niobate.
    Hohla A; Vuletic V; Hänsch TW; Zimmermann C
    Opt Lett; 1998 Mar; 23(6):436-8. PubMed ID: 18084536
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tunable, continuous-wave, ultraviolet source based on intracavity sum-frequency-generation in an optical parametric oscillator using BiB₃O₆.
    Devi K; Kumar SC; Ebrahim-Zadeh M
    Opt Express; 2013 Oct; 21(21):24829-36. PubMed ID: 24150326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient generation of blue light by doubly resonant sum-frequency mixing in a monolithic KTP resonator.
    Risk WP; Kozlovsky WJ
    Opt Lett; 1992 May; 17(10):707-9. PubMed ID: 19794604
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly coherent, watt-level deep-UV radiation via a frequency-quadrupled Yb-fiber laser system.
    Burkley Z; Brandt AD; Rasor C; Cooper SF; Yost DC
    Appl Opt; 2019 Mar; 58(7):1657-1661. PubMed ID: 30874196
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generation of tunable coherent extreme-ultraviolet radiation at wavelengths as low as 66 nm by resonant four-wave mixing.
    Hirakawa Y; Nagai A; Muraoka K; Okada T; Maeda M
    Opt Lett; 1993 May; 18(9):735-7. PubMed ID: 19802256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sum frequency mixing in potassium pentaborate as a source of tunable coherent radiation at wavelengths below 217 nm.
    Dunning FB; Stickel RE
    Appl Opt; 1976 Dec; 15(12):3131-4. PubMed ID: 20168403
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single-mode continuous-wave Cr(3+):LiSAF ring laser pumped by an injection-locked 670-nm broad-area diode laser.
    Knappe R; Boller KJ; Wallenstein R
    Opt Lett; 1995 Oct; 20(19):1988-90. PubMed ID: 19862226
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of 90-mW continuous-wave tunable laser light at 280 nm by frequency doubling in a KDP crystal.
    Nielsen JS
    Opt Lett; 1995 Apr; 20(8):840-2. PubMed ID: 19859347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High power tunable femtosecond ultraviolet laser source based on an Yb-fiber-laser pumped optical parametric oscillator.
    Gu C; Hu M; Fan J; Song Y; Liu B; Chai L; Wang C; Reid DT
    Opt Express; 2015 Mar; 23(5):6181-6. PubMed ID: 25836840
    [TBL] [Abstract][Full Text] [Related]  

  • 34. OH sensor based on ultraviolet, continuous-wave absorption spectroscopy utilizing a frequency-quadrupled, fiber-amplified external-cavity diode laser.
    Ray GJ; Anderson TN; Caton JA; Lucht RP; Walther T
    Opt Lett; 2001 Dec; 26(23):1870-2. PubMed ID: 18059721
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-sum- and -difference-frequency mixing in GdAl(3)(BO(3))(4):Nd(3+) for generation of tunable ultraviolet and infrared radiation.
    Brenier A; Tu C; Li J; Zhu Z; Wu B
    Opt Lett; 2002 Feb; 27(4):240-2. PubMed ID: 18007766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 5.7  W cw single-frequency laser at 671  nm by single-pass second harmonic generation of a 17.2  W injection-locked 1342  nm Nd : YVO4 ring laser using periodically poled MgO : LiNbO3.
    Koch P; Ruebel F; Bartschke J; L'huillier JA
    Appl Opt; 2015 Nov; 54(33):9954-9. PubMed ID: 26836563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-scanning of a continuous-wave dye laser having a phase-conjugating resonator cavity.
    Feinberg J; Bacher GD
    Opt Lett; 1984 Sep; 9(9):420-2. PubMed ID: 19721619
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High intensity vacuum ultraviolet and extreme ultraviolet production by noncollinear mixing in laser vaporized media.
    Todt MA; Albert DR; Davis HF
    Rev Sci Instrum; 2016 Jun; 87(6):063106. PubMed ID: 27370425
    [TBL] [Abstract][Full Text] [Related]  

  • 39. All-solid-state, high-power, deep-UV laser system based on cascaded sum-frequency mixing in CsLiB6O10 crystals.
    Sakuma J; Deki K; Finch A; Ohsako Y; Yokota T
    Appl Opt; 2000 Oct; 39(30):5505-11. PubMed ID: 18354547
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient generation of continuous-wave yellow light by single-pass sum-frequency mixing of a diode-pumped Nd:YVO(4) dual-wavelength laser with periodically poled lithium niobate.
    Chen YF; Tsai SW; Wang SC; Huang YC; Lin TC; Wong BC
    Opt Lett; 2002; 27(20):1809-11. PubMed ID: 18033370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.