These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 19710925)

  • 1. Preparation of group I introns for biochemical studies and crystallization assays by native affinity purification.
    Vicens Q; Gooding AR; Duarte LF; Batey RT
    PLoS One; 2009 Aug; 4(8):e6740. PubMed ID: 19710925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of a self-splicing group I intron with both exons.
    Adams PL; Stahley MR; Kosek AB; Wang J; Strobel SA
    Nature; 2004 Jul; 430(6995):45-50. PubMed ID: 15175762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystals by design: a strategy for crystallization of a ribozyme derived from the Tetrahymena group I intron.
    Golden BL; Podell ER; Gooding AR; Cech TR
    J Mol Biol; 1997 Aug; 270(5):711-23. PubMed ID: 9245599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting and analyzing the secondary structure domains of group I introns through the use of chimeric intron constructs.
    Tanner NK; Sargueil B
    J Mol Biol; 1995 Oct; 252(5):583-95. PubMed ID: 7563076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A group II intron-encoded maturase functions preferentially in cis and requires both the reverse transcriptase and X domains to promote RNA splicing.
    Cui X; Matsuura M; Wang Q; Ma H; Lambowitz AM
    J Mol Biol; 2004 Jul; 340(2):211-31. PubMed ID: 15201048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved native affinity purification of RNA.
    Batey RT; Kieft JS
    RNA; 2007 Aug; 13(8):1384-9. PubMed ID: 17548432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA target site requirements for homing in vivo of a bacterial group II intron encoding a protein lacking the DNA endonuclease domain.
    Jiménez-Zurdo JI; García-Rodríguez FM; Barrientos-Durán A; Toro N
    J Mol Biol; 2003 Feb; 326(2):413-23. PubMed ID: 12559910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of a group I intron splicing intermediate.
    Adams PL; Stahley MR; Gill ML; Kosek AB; Wang J; Strobel SA
    RNA; 2004 Dec; 10(12):1867-87. PubMed ID: 15547134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Architecture and folding mechanism of the Azoarcus Group I Pre-tRNA.
    Rangan P; Masquida B; Westhof E; Woodson SA
    J Mol Biol; 2004 May; 339(1):41-51. PubMed ID: 15123419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-splicing of group II introns in vitro: lariat formation and 3' splice site selection in mutant RNAs.
    Schmelzer C; Müller MW
    Cell; 1987 Dec; 51(5):753-62. PubMed ID: 2445492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A broadscale phylogenetic analysis of group II intron RNAs and intron-encoded reverse transcriptases.
    Simon DM; Kelchner SA; Zimmerly S
    Mol Biol Evol; 2009 Dec; 26(12):2795-808. PubMed ID: 19713327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of a biotinylated photocleavable nucleotide monophosphate for the preparation of natively folded RNAs.
    Luo Y; Sintim HO; Dayie TK
    Methods Enzymol; 2014; 549():115-31. PubMed ID: 25432747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale native preparation of in vitro transcribed RNA.
    Keel AY; Easton LE; Lukavsky PJ; Kieft JS
    Methods Enzymol; 2009; 469():3-25. PubMed ID: 20946782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and splicing in vivo of a Sinorhizobium meliloti group II intron associated with particular insertion sequences of the IS630-Tc1/IS3 retroposon superfamily.
    Martínez-Abarca F; Zekri S; Toro N
    Mol Microbiol; 1998 Jun; 28(6):1295-306. PubMed ID: 9680217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNAs synthesized using photocleavable biotinylated nucleotides have dramatically improved catalytic efficiency.
    Luo Y; Eldho NV; Sintim HO; Dayie TK
    Nucleic Acids Res; 2011 Oct; 39(19):8559-71. PubMed ID: 21742763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative splicing by participation of the group II intron ORF in extremely halotolerant and alkaliphilic Oceanobacillus iheyensis.
    Chee GJ; Takami H
    Microbes Environ; 2011; 26(1):54-60. PubMed ID: 21487203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Splicing of COB intron 5 requires pairing between the internal guide sequence and both flanking exons.
    Partono S; Lewin AS
    Proc Natl Acad Sci U S A; 1990 Nov; 87(21):8192-6. PubMed ID: 2236031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of the Tetrahymena group I intron into bacterial rRNA by reverse splicing in vivo.
    Roman J; Woodson SA
    Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2134-9. PubMed ID: 9482851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tertiary architecture of the Oceanobacillus iheyensis group II intron.
    Toor N; Keating KS; Fedorova O; Rajashankar K; Wang J; Pyle AM
    RNA; 2010 Jan; 16(1):57-69. PubMed ID: 19952115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An alternative intron-exon pairing scheme implied by unexpected in vitro activities of group II intron RmInt1 from Sinorhizobium meliloti.
    Costa M; Michel F; Molina-Sánchez MD; Martinez-Abarca F; Toro N
    Biochimie; 2006 Jun; 88(6):711-7. PubMed ID: 16460862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.