BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 19711352)

  • 1. Requirement of a dynein light chain in TGFbeta/Smad3 signaling.
    Jin Q; Gao G; Mulder KM
    J Cell Physiol; 2009 Dec; 221(3):707-15. PubMed ID: 19711352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Requirement for the dynein light chain km23-1 in a Smad2-dependent transforming growth factor-beta signaling pathway.
    Jin Q; Ding W; Mulder KM
    J Biol Chem; 2007 Jun; 282(26):19122-32. PubMed ID: 17420258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Requirement for protein kinase A in the phosphorylation of the TGFβ receptor-interacting protein km23-1 as a component of TGFβ downstream effects.
    Jin Q; Zhong Y; Mulder KM
    Exp Cell Res; 2013 Apr; 319(6):897-907. PubMed ID: 23333499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dynein motor attachment complex regulates TGFß/Smad3 signaling.
    Jin Q; Gao G; Mulder KM
    Int J Biol Sci; 2013; 9(6):531-40. PubMed ID: 23781147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Requirement of km23 for TGFbeta-mediated growth inhibition and induction of fibronectin expression.
    Jin Q; Ding W; Staub CM; Gao G; Tang Q; Mulder KM
    Cell Signal; 2005 Nov; 17(11):1363-72. PubMed ID: 15925487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Requirement of a dynein light chain in transforming growth factor β signaling in zebrafish ovarian follicle cells.
    Jin Q; Gao G; Mulder KM
    Mol Cell Endocrinol; 2012 Jan; 348(1):233-40. PubMed ID: 21920407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential regulation of transforming growth factor beta signaling pathways by Notch in human endothelial cells.
    Fu Y; Chang A; Chang L; Niessen K; Eapen S; Setiadi A; Karsan A
    J Biol Chem; 2009 Jul; 284(29):19452-62. PubMed ID: 19473993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic AMP enhances TGFβ responses of breast cancer cells by upregulating TGFβ receptor I expression.
    Oerlecke I; Bauer E; Dittmer A; Leyh B; Dittmer J
    PLoS One; 2013; 8(1):e54261. PubMed ID: 23349840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasminogen activator inhibitor-1 regulates integrin alphavbeta3 expression and autocrine transforming growth factor beta signaling.
    Pedroja BS; Kang LE; Imas AO; Carmeliet P; Bernstein AM
    J Biol Chem; 2009 Jul; 284(31):20708-17. PubMed ID: 19487690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinoids regulate TGFbeta signaling at the level of Smad2 phosphorylation and nuclear accumulation.
    Hoover LL; Burton EG; O'Neill ML; Brooks BA; Sreedharan S; Dawson NA; Kubalak SW
    Biochim Biophys Acta; 2008 Dec; 1783(12):2279-86. PubMed ID: 18773928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TbetaRI/Alk5-independent TbetaRII signaling to ERK1/2 in human skin cells according to distinct levels of TbetaRII expression.
    Bandyopadhyay B; Han A; Dai J; Fan J; Li Y; Chen M; Woodley DT; Li W
    J Cell Sci; 2011 Jan; 124(Pt 1):19-24. PubMed ID: 21172820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The TGFβ receptor-interacting protein km23-1/DYNLRB1 plays an adaptor role in TGFβ1 autoinduction via its association with Ras.
    Jin Q; Ding W; Mulder KM
    J Biol Chem; 2012 Jul; 287(31):26453-63. PubMed ID: 22637579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide induces TIMP-1 expression by activating the transforming growth factor beta-Smad signaling pathway.
    Akool el-S; Doller A; Müller R; Gutwein P; Xin C; Huwiler A; Pfeilschifter J; Eberhardt W
    J Biol Chem; 2005 Nov; 280(47):39403-16. PubMed ID: 16183640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erbin inhibits transforming growth factor beta signaling through a novel Smad-interacting domain.
    Dai F; Chang C; Lin X; Dai P; Mei L; Feng XH
    Mol Cell Biol; 2007 Sep; 27(17):6183-94. PubMed ID: 17591701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Knockdown of elF3a inhibits TGF‑β1‑induced extracellular matrix protein expression in keloid fibroblasts.
    Li T; Zhao J
    Mol Med Rep; 2018 Mar; 17(3):4057-4061. PubMed ID: 29286129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interleukin 1 β-induced SMAD2/3 linker modifications are TAK1 dependent and delay TGFβ signaling in primary human mesenchymal stem cells.
    van den Akker GG; van Beuningen HM; Vitters EL; Koenders MI; van de Loo FA; van Lent PL; Blaney Davidson EN; van der Kraan PM
    Cell Signal; 2017 Dec; 40():190-199. PubMed ID: 28943409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular imaging of TGFβ-induced Smad2/3 phosphorylation reveals a role for receptor tyrosine kinases in modulating TGFβ signaling.
    Nyati S; Schinske K; Ray D; Nyati MK; Ross BD; Rehemtulla A
    Clin Cancer Res; 2011 Dec; 17(23):7424-39. PubMed ID: 21948232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transforming growth factor-β1 induces type II collagen and aggrecan expression via activation of extracellular signal-regulated kinase 1/2 and Smad2/3 signaling pathways.
    Zhu Y; Tao H; Jin C; Liu Y; Lu X; Hu X; Wang X
    Mol Med Rep; 2015 Oct; 12(4):5573-9. PubMed ID: 26165845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-specificity of transforming growth factor-beta response is dictated by receptor bioavailability.
    Suszko MI; Woodruff TK
    J Mol Endocrinol; 2006 Jun; 36(3):591-600. PubMed ID: 16720726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth differentiation factor-9 signaling is mediated by the type I receptor, activin receptor-like kinase 5.
    Mazerbourg S; Klein C; Roh J; Kaivo-Oja N; Mottershead DG; Korchynskyi O; Ritvos O; Hsueh AJ
    Mol Endocrinol; 2004 Mar; 18(3):653-65. PubMed ID: 14684852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.