These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 19711893)

  • 1. Instability of cationic gold nanoparticle bioconjugates: the role of citrate ions.
    Ojea-Jiménez I; Puntes V
    J Am Chem Soc; 2009 Sep; 131(37):13320-7. PubMed ID: 19711893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interparticle interactions in glutathione mediated assembly of gold nanoparticles.
    Lim II; Mott D; Ip W; Njoki PN; Pan Y; Zhou S; Zhong CJ
    Langmuir; 2008 Aug; 24(16):8857-63. PubMed ID: 18642936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules.
    Diegoli S; Manciulea AL; Begum S; Jones IP; Lead JR; Preece JA
    Sci Total Environ; 2008 Aug; 402(1):51-61. PubMed ID: 18534664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folding induced assembly of polypeptide decorated gold nanoparticles.
    Aili D; Enander K; Rydberg J; Nesterenko I; Björefors F; Baltzer L; Liedberg B
    J Am Chem Soc; 2008 Apr; 130(17):5780-8. PubMed ID: 18380430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of superparamagnetic iron oxide core-gold shell nanoparticles in high ionic strength media.
    Lim JK; Majetich SA; Tilton RD
    Langmuir; 2009 Dec; 25(23):13384-93. PubMed ID: 19928938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pH on the single-step synthesis of gold nanoparticles using PEO-PPO-PEO triblock copolymers in aqueous media.
    Shou Q; Guo C; Yang L; Jia L; Liu C; Liu H
    J Colloid Interface Sci; 2011 Nov; 363(2):481-9. PubMed ID: 21855892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and spectroscopic characterization of gold nanoparticles.
    Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):80-5. PubMed ID: 18155956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of size and shape of Au nanoparticles using amino-X-shaped poly(ethylene oxide)-poly(propylene oxide) block copolymers.
    Goy-López S; Taboada P; Cambón A; Juárez J; Alvarez-Lorenzo C; Concheiro A; Mosquera V
    J Phys Chem B; 2010 Jan; 114(1):66-76. PubMed ID: 19968275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimuli induced structural changes of gold nanoparticle assemblies having sequential alternating amphiphilic peptides at the surface.
    Higuchi M; Nagata K; Abiko S; Tanaka M; Kinoshita T
    Langmuir; 2008 Dec; 24(23):13359-63. PubMed ID: 18989942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand exchange effects in gold nanoparticle assembly induced by oxidative stress biomarkers: homocysteine and cysteine.
    Stobiecka M; Deeb J; Hepel M
    Biophys Chem; 2010 Feb; 146(2-3):98-107. PubMed ID: 19944518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust ligand shells for biological applications of gold nanoparticles.
    Duchesne L; Gentili D; Comes-Franchini M; Fernig DG
    Langmuir; 2008 Dec; 24(23):13572-80. PubMed ID: 18991409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homocysteine-mediated reactivity and assembly of gold nanoparticles.
    Lim II; Ip W; Crew E; Njoki PN; Mott D; Zhong CJ; Pan Y; Zhou S
    Langmuir; 2007 Jan; 23(2):826-33. PubMed ID: 17209640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible self-assembly of carboxylated peptide-functionalized gold nanoparticles driven by metal-ion coordination.
    Si S; Raula M; Paira TK; Mandal TK
    Chemphyschem; 2008 Aug; 9(11):1578-84. PubMed ID: 18615416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands.
    Liu X; Atwater M; Wang J; Huo Q
    Colloids Surf B Biointerfaces; 2007 Jul; 58(1):3-7. PubMed ID: 16997536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational and combinatorial design of peptide capping ligands for gold nanoparticles.
    Lévy R; Thanh NT; Doty RC; Hussain I; Nichols RJ; Schiffrin DJ; Brust M; Fernig DG
    J Am Chem Soc; 2004 Aug; 126(32):10076-84. PubMed ID: 15303884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of electrolyte induced aggregation of gold nanoparticles capped by amino acids.
    Aryal S; Remant BK; Narayan B; Kim CK; Kim HY
    J Colloid Interface Sci; 2006 Jul; 299(1):191-7. PubMed ID: 16499918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of dyes, gold nanocrystals, pH, and metal ions on plasmonic and molecular resonance coupling.
    Ni W; Chen H; Su J; Sun Z; Wang J; Wu H
    J Am Chem Soc; 2010 Apr; 132(13):4806-14. PubMed ID: 20225866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interaction between gold nanoparticles and cationic and anionic dyes: enhanced UV-visible absorption.
    Narband N; Uppal M; Dunnill CW; Hyett G; Wilson M; Parkin IP
    Phys Chem Chem Phys; 2009 Nov; 11(44):10513-8. PubMed ID: 19890539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metallic cation induced one-dimensional assembly of poly(acrylic acid)-1-dodecanethiol-stabilized gold nanoparticles.
    Zhu L; Xue D; Wang Z
    Langmuir; 2008 Oct; 24(20):11385-9. PubMed ID: 18808165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.