These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 19711970)

  • 1. Evolution of graphene growth on Ni and Cu by carbon isotope labeling.
    Li X; Cai W; Colombo L; Ruoff RS
    Nano Lett; 2009 Dec; 9(12):4268-72. PubMed ID: 19711970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth mechanism and controlled synthesis of AB-stacked bilayer graphene on Cu-Ni alloy foils.
    Wu Y; Chou H; Ji H; Wu Q; Chen S; Jiang W; Hao Y; Kang J; Ren Y; Piner RD; Ruoff RS
    ACS Nano; 2012 Sep; 6(9):7731-8. PubMed ID: 22946844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene growth on Ni(111) by transformation of a surface carbide.
    Lahiri J; Miller T; Adamska L; Oleynik II; Batzill M
    Nano Lett; 2011 Feb; 11(2):518-22. PubMed ID: 21182255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of polycrystalline cu substrate on graphene growth by chemical vapor deposition.
    Wood JD; Schmucker SW; Lyons AS; Pop E; Lyding JW
    Nano Lett; 2011 Nov; 11(11):4547-54. PubMed ID: 21942318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passivation of metal surface states: microscopic origin for uniform monolayer graphene by low temperature chemical vapor deposition.
    Jeon I; Yang H; Lee SH; Heo J; Seo DH; Shin J; Chung UI; Kim ZG; Chung HJ; Seo S
    ACS Nano; 2011 Mar; 5(3):1915-20. PubMed ID: 21309604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remote catalyzation for direct formation of graphene layers on oxides.
    Teng PY; Lu CC; Akiyama-Hasegawa K; Lin YC; Yeh CH; Suenaga K; Chiu PW
    Nano Lett; 2012 Mar; 12(3):1379-84. PubMed ID: 22332771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition.
    Reina A; Jia X; Ho J; Nezich D; Son H; Bulovic V; Dresselhaus MS; Kong J
    Nano Lett; 2009 Jan; 9(1):30-5. PubMed ID: 19046078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-area Bernal-stacked bi-, tri-, and tetralayer graphene.
    Sun Z; Raji AR; Zhu Y; Xiang C; Yan Z; Kittrell C; Samuel EL; Tour JM
    ACS Nano; 2012 Nov; 6(11):9790-6. PubMed ID: 23110694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene films with large domain size by a two-step chemical vapor deposition process.
    Li X; Magnuson CW; Venugopal A; An J; Suk JW; Han B; Borysiak M; Cai W; Velamakanni A; Zhu Y; Fu L; Vogel EM; Voelkl E; Colombo L; Ruoff RS
    Nano Lett; 2010 Nov; 10(11):4328-34. PubMed ID: 20957985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependence of the Raman spectra of graphene and graphene multilayers.
    Calizo I; Balandin AA; Bao W; Miao F; Lau CN
    Nano Lett; 2007 Sep; 7(9):2645-9. PubMed ID: 17718584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct chemical vapor deposition of graphene on dielectric surfaces.
    Ismach A; Druzgalski C; Penwell S; Schwartzberg A; Zheng M; Javey A; Bokor J; Zhang Y
    Nano Lett; 2010 May; 10(5):1542-8. PubMed ID: 20361753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic graphene growth accompanied by step bunching on a dynamic copper surface.
    Hayashi K; Sato S; Yokoyama N
    Nanotechnology; 2013 Jan; 24(2):025603. PubMed ID: 23220881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman study on the g mode of graphene for determination of edge orientation.
    Cong C; Yu T; Wang H
    ACS Nano; 2010 Jun; 4(6):3175-80. PubMed ID: 20446715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition.
    Cai W; Moore AL; Zhu Y; Li X; Chen S; Shi L; Ruoff RS
    Nano Lett; 2010 May; 10(5):1645-51. PubMed ID: 20405895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic control of catalytic CVD for high-quality graphene at low temperatures.
    Weatherup RS; Dlubak B; Hofmann S
    ACS Nano; 2012 Nov; 6(11):9996-10003. PubMed ID: 23025628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional single-layer graphene sheets from aromatic monolayers.
    Matei DG; Weber NE; Kurasch S; Wundrack S; Woszczyna M; Grothe M; Weimann T; Ahlers F; Stosch R; Kaiser U; Turchanin A
    Adv Mater; 2013 Aug; 25(30):4146-51. PubMed ID: 23716462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Templated growth of graphenic materials.
    Nicholas NW; Connors LM; Ding F; Yakobson BI; Schmidt HK; Hauge RH
    Nanotechnology; 2009 Jun; 20(24):245607. PubMed ID: 19471075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene.
    Liu L; Zhou H; Cheng R; Yu WJ; Liu Y; Chen Y; Shaw J; Zhong X; Huang Y; Duan X
    ACS Nano; 2012 Sep; 6(9):8241-9. PubMed ID: 22906199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yield and shape selection of graphene nanoislands grown on Ni(111).
    Olle M; Ceballos G; Serrate D; Gambardella P
    Nano Lett; 2012 Sep; 12(9):4431-6. PubMed ID: 22901016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene epitaxy by chemical vapor deposition on SiC.
    Strupinski W; Grodecki K; Wysmolek A; Stepniewski R; Szkopek T; Gaskell PE; Grüneis A; Haberer D; Bozek R; Krupka J; Baranowski JM
    Nano Lett; 2011 Apr; 11(4):1786-91. PubMed ID: 21438581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.