These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 19711973)

  • 41. Metathesis-like splitting reactions of metallated [36]octaphyrins(1.1.1.1.1.1.1.1): experimental and computational investigations.
    Tanaka Y; Shinokubo H; Yoshimura Y; Osuka A
    Chemistry; 2009 Jun; 15(23):5674-85. PubMed ID: 19402097
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chemiexcitation Efficiency of Intermolecular Electron-transfer Catalyzed Peroxide Decomposition Shows Low Sensitivity to Solvent-cavity Effects.
    Khalid M; de Souza SP; Bartoloni FH; Augusto FA; Baader WJ
    Photochem Photobiol; 2016 Jul; 92(4):537-45. PubMed ID: 27144784
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide.
    Asatryan R; Bozzelli JW
    Phys Chem Chem Phys; 2008 Apr; 10(13):1769-80. PubMed ID: 18350182
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermodynamic analysis of catalysis by the dihydroorotases from hamster and Bacillus caldolyticus, as compared with the uncatalyzed reaction.
    Huang DT; Kaplan J; Menz RI; Katis VL; Wake RG; Zhao F; Wolfenden R; Christopherson RI
    Biochemistry; 2006 Jul; 45(27):8275-83. PubMed ID: 16819826
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biphasic kinetics in the reaction between amino acids or glutathione and the chromium acetate cluster, [Cr3O(OAc)6]+.
    Chaudhary S; Van Horn JD
    Mutat Res; 2006 Nov; 610(1-2):56-65. PubMed ID: 16890480
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Oxidations of NADH analogues by cis-[RuIV(bpy)2(py)(O)]2+ occur by hydrogen-atom transfer rather than by hydride transfer.
    Matsuo T; Mayer JM
    Inorg Chem; 2005 Apr; 44(7):2150-8. PubMed ID: 15792449
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanistic aspects of propene epoxidation by hydrogen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1.
    Stare J; Henson NJ; Eckert J
    J Chem Inf Model; 2009 Apr; 49(4):833-46. PubMed ID: 19267473
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intermolecular C-H bond activation reactions promoted by transient titanium alkylidynes. Synthesis, reactivity, kinetic, and theoretical studies of the Ti[triple bond]C linkage.
    Bailey BC; Fan H; Huffman JC; Baik MH; Mindiola DJ
    J Am Chem Soc; 2007 Jul; 129(28):8781-93. PubMed ID: 17592842
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis, structure, and reactivity of O-donor Ir(III) complexes: C-H activation studies with benzene.
    Bhalla G; Liu XY; Oxgaard J; Goddard WA; Periana RA
    J Am Chem Soc; 2005 Aug; 127(32):11372-89. PubMed ID: 16089467
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Protonation of two adjacent tyrosine residues influences the reduction of cytochrome c by diphenylacetaldehyde: a possible mechanism to select the reducer agent of heme iron.
    Rinaldi TA; Tersariol IL; Dyszy FH; Prado FM; Nascimento OR; Di Mascio P; Nantes IL
    Free Radic Biol Med; 2004 Mar; 36(6):802-10. PubMed ID: 14990358
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Activation parameters for the recombination reaction of intramolecular radical pairs generated from the radical diffusion-inhibited HABI derivative.
    Hatano S; Abe J
    J Phys Chem A; 2008 Jul; 112(27):6098-103. PubMed ID: 18563869
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermal and urea-induced unfolding of the marginally stable lac repressor DNA-binding domain: a model system for analysis of solute effects on protein processes.
    Felitsky DJ; Record MT
    Biochemistry; 2003 Feb; 42(7):2202-17. PubMed ID: 12590610
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chemiluminescence in autoxidation of phosphonate carbanions. Phospha-1,2-dioxetanes as the most likely high-energy intermediates.
    Motoyoshiya J; Ikeda T; Tsuboi S; Kusaura T; Takeuchi Y; Hayashi S; Yoshioka S; Takaguchi Y; Aoyama H
    J Org Chem; 2003 Jul; 68(15):5950-5. PubMed ID: 12868931
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Solvent effects and activation parameters in the competitive cleavage of C-CN and C-H bonds in 2-methyl-3-butenenitrile using [(dippe)NiH]2.
    Swartz BD; Reinartz NM; Brennessel WW; GarcĂ­a JJ; Jones WD
    J Am Chem Soc; 2008 Jul; 130(26):8548-54. PubMed ID: 18540608
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanism for activation of molecular oxygen by cis- and trans-(pyridine)2Pd(OAc)H: Pd(0) versus direct insertion.
    Keith JM; Goddard WA
    J Am Chem Soc; 2009 Feb; 131(4):1416-25. PubMed ID: 19133788
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An old reaction in new media: kinetic study of a platinum(II) substitution reaction in ionic liquids.
    Correia I; Welton T
    Dalton Trans; 2009 Jun; (21):4115-21. PubMed ID: 19452059
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cyclic Peroxidic Carbon Dioxide Dimer Fuels Peroxyoxalate Chemiluminescence.
    da Silva SM; Lang AP; Dos Santos APF; Cabello MC; Ciscato LFML; Bartoloni FH; Bastos EL; Baader WJ
    J Org Chem; 2021 Sep; 86(17):11434-11441. PubMed ID: 34420296
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of the catalytic activity of Au3, Au4+, Au5, and Au5- in the gas-phase reaction of H2 and O2 to form hydrogen peroxide: a density functional theory investigation.
    Joshi AM; Delgass WN; Thomson KT
    J Phys Chem B; 2005 Dec; 109(47):22392-406. PubMed ID: 16853917
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Studies on the mechanism of the peroxyoxalate chemiluminescence reaction: part 2. Further identification of intermediates using 2D EXSY 13C nuclear magnetic resonance spectroscopy.
    Tonkin SA; Bos R; Dyson GA; Lim KF; Russell RA; Watson SP; Hindson CM; Barnett NW
    Anal Chim Acta; 2008 May; 614(2):173-81. PubMed ID: 18420048
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Proton transfer to nickel-thiolate complexes. 1. Protonation of [Ni(SC(6)H(4)R-4)(2)(Ph(2)PCH(2)CH(2)PPh(2))] (R = Me, MeO, H, Cl, or NO(2)).
    Autissier V; Clegg W; Harrington RW; Henderson RA
    Inorg Chem; 2004 May; 43(10):3098-105. PubMed ID: 15132615
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.