BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 19711976)

  • 1. Movements of HIV-virions in human cervical mucus.
    Boukari H; Brichacek B; Stratton P; Mahoney SF; Lifson JD; Margolis L; Nossal R
    Biomacromolecules; 2009 Sep; 10(9):2482-8. PubMed ID: 19711976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging and tracking HIV viruses in human cervical mucus.
    Boukari F; Makrogiannis S; Nossal R; Boukari H
    J Biomed Opt; 2016 Sep; 21(9):96001. PubMed ID: 27598560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibody-Mediated Immobilization of Virions in Mucus.
    Jensen MA; Wang YY; Lai SK; Forest MG; McKinley SA
    Bull Math Biol; 2019 Oct; 81(10):4069-4099. PubMed ID: 31468263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human cervicovaginal mucus contains an activity that hinders HIV-1 movement.
    Shukair SA; Allen SA; Cianci GC; Stieh DJ; Anderson MR; Baig SM; Gioia CJ; Spongberg EJ; Kauffman SM; McRaven MD; Lakougna HY; Hammond C; Kiser PF; Hope TJ
    Mucosal Immunol; 2013 Mar; 6(2):427-34. PubMed ID: 22990624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting first traversal times for virions and nanoparticles in mucus with slowed diffusion.
    Erickson AM; Henry BI; Murray JM; Klasse PJ; Angstmann CN
    Biophys J; 2015 Jul; 109(1):164-72. PubMed ID: 26153713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermosensitive and mucoadhesive pluronic-hydroxypropylmethylcellulose hydrogel containing the mini-CD4 M48U1 is a promising efficient barrier against HIV diffusion through macaque cervicovaginal mucus.
    Bouchemal K; Aka-Any-Grah A; Dereuddre-Bosquet N; Martin L; Lievin-Le-Moal V; Le Grand R; Nicolas V; Gibellini D; Lembo D; Poüs C; Koffi A; Ponchel G
    Antimicrob Agents Chemother; 2015 Apr; 59(4):2215-22. PubMed ID: 25645853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of Virion Collisions in Cervicovaginal Mucus Reveals Limits on Agglutination as the Protective Mechanism of Secretory Immunoglobulin A.
    Chen A; McKinley SA; Shi F; Wang S; Mucha PJ; Harit D; Forest MG; Lai SK
    PLoS One; 2015; 10(7):e0131351. PubMed ID: 26132216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HIV binding, penetration, and primary infection in human cervicovaginal tissue.
    Maher D; Wu X; Schacker T; Horbul J; Southern P
    Proc Natl Acad Sci U S A; 2005 Aug; 102(32):11504-9. PubMed ID: 16061810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion of macromolecules and virus-like particles in human cervical mucus.
    Olmsted SS; Padgett JL; Yudin AI; Whaley KJ; Moench TR; Cone RA
    Biophys J; 2001 Oct; 81(4):1930-7. PubMed ID: 11566767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Correlation between Infectivity and Gp120 Density on HIV-1 Virions Revealed by Optical Trapping Virometry.
    DeSantis MC; Kim JH; Song H; Klasse PJ; Cheng W
    J Biol Chem; 2016 Jun; 291(25):13088-97. PubMed ID: 27129237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibody diffusion in human cervical mucus.
    Saltzman WM; Radomsky ML; Whaley KJ; Cone RA
    Biophys J; 1994 Feb; 66(2 Pt 1):508-15. PubMed ID: 8161703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dilution assessment of cervicovaginal secretions collected by vaginal washing to evaluate mucosal shedding of free human immunodeficiency virus.
    Mohamed AS; Becquart P; Hocini H; Métais P; Kazatchkine M; Bélec L
    Clin Diagn Lab Immunol; 1997 Sep; 4(5):624-6. PubMed ID: 9302218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro models of mucosal HIV transmission.
    Shattock RJ; Griffin GE; Gorodeski GI
    Nat Med; 2000 Jun; 6(6):607-8. PubMed ID: 10835650
    [No Abstract]   [Full Text] [Related]  

  • 14. Encapsulating Quantum Dots within HIV-1 Virions through Site-Specific Decoration of the Matrix Protein Enables Single Virus Tracking in Live Primary Macrophages.
    Li Q; Yin W; Li W; Zhang Z; Zhang X; Zhang XE; Cui Z
    Nano Lett; 2018 Dec; 18(12):7457-7468. PubMed ID: 30398057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal dynamics of HIV propagation.
    Strain MC; Richman DD; Wong JK; Levine H
    J Theor Biol; 2002 Sep; 218(1):85-96. PubMed ID: 12297072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATPgammaS disrupts human immunodeficiency virus type 1 virion core integrity.
    Gurer C; Höglund A; Höglund S; Luban J
    J Virol; 2005 May; 79(9):5557-67. PubMed ID: 15827170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How do cell-free HIV virions avoid infecting dead-end host cells and cell fragments?
    Lyengar S; Schwartz DH
    AIDS Rev; 2004; 6(3):155-60. PubMed ID: 15595432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-to-cell transfer of HIV-1 via virological synapses leads to endosomal virion maturation that activates viral membrane fusion.
    Dale BM; McNerney GP; Thompson DL; Hubner W; de Los Reyes K; Chuang FY; Huser T; Chen BK
    Cell Host Microbe; 2011 Dec; 10(6):551-62. PubMed ID: 22177560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origins of HIV-infected leukocytes and virions in semen.
    Houzet L; Matusali G; Dejucq-Rainsford N
    J Infect Dis; 2014 Dec; 210 Suppl 3():S622-30. PubMed ID: 25414416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.
    Baumann G; Place RF; Földes-Papp Z
    Curr Pharm Biotechnol; 2010 Aug; 11(5):527-43. PubMed ID: 20553227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.