BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 19712109)

  • 1. Calpain-mediated degradation of reversibly oxidized protein-tyrosine phosphatase 1B.
    Trümpler A; Schlott B; Herrlich P; Greer PA; Böhmer FD
    FEBS J; 2009 Oct; 276(19):5622-33. PubMed ID: 19712109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation sensitivity of the catalytic cysteine of the protein-tyrosine phosphatases SHP-1 and SHP-2.
    Weibrecht I; Böhmer SA; Dagnell M; Kappert K; Ostman A; Böhmer FD
    Free Radic Biol Med; 2007 Jul; 43(1):100-10. PubMed ID: 17561098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox-regulated affinity of the third PDZ domain in the phosphotyrosine phosphatase PTP-BL for cysteine-containing target peptides.
    van den Berk LC; Landi E; Harmsen E; Dente L; Hendriks WJ
    FEBS J; 2005 Jul; 272(13):3306-16. PubMed ID: 15978037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible oxidation of the membrane distal domain of receptor PTPalpha is mediated by a cyclic sulfenamide.
    Yang J; Groen A; Lemeer S; Jans A; Slijper M; Roe SM; den Hertog J; Barford D
    Biochemistry; 2007 Jan; 46(3):709-19. PubMed ID: 17223692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the hematopoietic tyrosine phosphatase (HePTP) catalytic domain: structure of a KIM phosphatase with phosphate bound at the active site.
    Mustelin T; Tautz L; Page R
    J Mol Biol; 2005 Nov; 354(1):150-63. PubMed ID: 16226275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate.
    Salmeen A; Andersen JN; Myers MP; Meng TC; Hinks JA; Tonks NK; Barford D
    Nature; 2003 Jun; 423(6941):769-73. PubMed ID: 12802338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B.
    van Montfort RL; Congreve M; Tisi D; Carr R; Jhoti H
    Nature; 2003 Jun; 423(6941):773-7. PubMed ID: 12802339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular inhibition of protein tyrosine phosphatase 1B by uncharged thioxothiazolidinone derivatives.
    Stuible M; Zhao L; Aubry I; Schmidt-Arras D; Böhmer FD; Li CJ; Tremblay ML
    Chembiochem; 2007 Jan; 8(2):179-86. PubMed ID: 17191286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox regulation of protein-tyrosine phosphatases.
    den Hertog J; Groen A; van der Wijk T
    Arch Biochem Biophys; 2005 Feb; 434(1):11-5. PubMed ID: 15629103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pleiotropic effects of zebrafish protein-tyrosine phosphatase-1B on early embryonic development.
    van der Sar AM; de Fockert J; Betist M; Zivković D; den Hertog J
    Int J Dev Biol; 1999 Nov; 43(8):785-94. PubMed ID: 10707902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines.
    Chen CY; Willard D; Rudolph J
    Biochemistry; 2009 Feb; 48(6):1399-409. PubMed ID: 19166311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of protein tyrosine phosphatases by amino acid, peptide, and protein hydroperoxides: potential modulation of cell signaling by protein oxidation products.
    Gracanin M; Davies MJ
    Free Radic Biol Med; 2007 May; 42(10):1543-51. PubMed ID: 17448901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of protein tyrosine phosphatases as a pharmaceutical mechanism of action: a study using 4-hydroxy-3,3-dimethyl-2H-benzo[g]indole-2,5(3H)-dione.
    Liljebris C; Baranczewski P; Björkstrand E; Byström S; Lundgren B; Tjernberg A; Warolén M; James SR
    J Pharmacol Exp Ther; 2004 May; 309(2):711-9. PubMed ID: 14747616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass spectrometry-based analyses for identifying and characterizing S-nitrosylation of protein tyrosine phosphatases.
    Chen YY; Huang YF; Khoo KH; Meng TC
    Methods; 2007 Jul; 42(3):243-9. PubMed ID: 17532511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of PTP1B via glutathionylation of the active site cysteine 215.
    Barrett WC; DeGnore JP; König S; Fales HM; Keng YF; Zhang ZY; Yim MB; Chock PB
    Biochemistry; 1999 May; 38(20):6699-705. PubMed ID: 10350489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Singlet oxygen inactivates protein tyrosine phosphatase-1B by oxidation of the active site cysteine.
    von Montfort C; Sharov VS; Metzger S; Schöneich C; Sies H; Klotz LO
    Biol Chem; 2006; 387(10-11):1399-404. PubMed ID: 17081112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residue 259 in protein-tyrosine phosphatase PTP1B and PTPalpha determines the flexibility of glutamine 262.
    Peters GH; Iversen LF; Andersen HS; Møller NP; Olsen OH
    Biochemistry; 2004 Jul; 43(26):8418-28. PubMed ID: 15222753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox-based probes for protein tyrosine phosphatases.
    Leonard SE; Garcia FJ; Goodsell DS; Carroll KS
    Angew Chem Int Ed Engl; 2011 May; 50(19):4423-7. PubMed ID: 21504031
    [No Abstract]   [Full Text] [Related]  

  • 19. Identification of the oxidation states of the active site cysteine in a recombinant protein tyrosine phosphatase by electrospray mass spectrometry using on-line desalting.
    DeGnore JP; König S; Barrett WC; Chock PB; Fales HM
    Rapid Commun Mass Spectrom; 1998; 12(20):1457-62. PubMed ID: 9796533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sap-1/PTPRH activity is regulated by reversible dimerization.
    Wälchli S; Espanel X; Hooft van Huijsduijnen R
    Biochem Biophys Res Commun; 2005 Jun; 331(2):497-502. PubMed ID: 15850787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.