These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 19712391)

  • 1. Iron respiration by Acidiphilium cryptum at pH 5.
    Bilgin AA; Silverstein J; Jenkins JD
    FEMS Microbiol Ecol; 2004 Jul; 49(1):137-43. PubMed ID: 19712391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Isolation and characterization of Acidiphilium strain teng-A and its metabolism of fe (III) during pure- and mixed cultivation].
    Liu YY; Chen ZW; Jiang CY; Liu SJ
    Wei Sheng Wu Xue Bao; 2007 Apr; 47(2):350-4. PubMed ID: 17552248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of soluble ferri-hydroxide complexes on microbial neutralization of acid mine drainage.
    Bilgin AA; Silverstein J; Hernandez M
    Environ Sci Technol; 2005 Oct; 39(20):7826-32. PubMed ID: 16295843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microbial fuel cell operating at low pH using the acidophile Acidiphilium cryptum.
    Borole AP; O'Neill H; Tsouris C; Cesar S
    Biotechnol Lett; 2008 Aug; 30(8):1367-72. PubMed ID: 18368296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteogenomic and functional analysis of chromate reduction in Acidiphilium cryptum JF-5, an Fe(III)-respiring acidophile.
    Magnuson TS; Swenson MW; Paszczynski AJ; Deobald LA; Kerk D; Cummings DE
    Biometals; 2010 Dec; 23(6):1129-38. PubMed ID: 20593301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of Cr(VI) under acidic conditions by the facultative Fe(lll)-reducing bacterium Acidiphilium cryptum.
    Cummings DE; Fendorf S; Singh N; Sani RK; Peyton BM; Magnuson TS
    Environ Sci Technol; 2007 Jan; 41(1):146-52. PubMed ID: 17265940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial reduction of Fe(III) in the presence of oxygen under low pH conditions.
    Küsel K; Roth U; Drake HL
    Environ Microbiol; 2002 Jul; 4(7):414-21. PubMed ID: 12123477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inducible aluminum resistance of Acidiphilium cryptum and aluminum tolerance of other acidophilic bacteria.
    Fischer J; Quentmeier A; Gansel S; Sabados V; Friedrich CG
    Arch Microbiol; 2002 Dec; 178(6):554-8. PubMed ID: 12420179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria.
    Coupland K; Johnson DB
    FEMS Microbiol Lett; 2008 Feb; 279(1):30-5. PubMed ID: 18081844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of Acidithiobacillus ferrooxidans in alleviating the inhibitory effect of thiosulfate on the growth of acidophilic Acidiphilium species isolated from acid mine drainage samples from Garubathan, India.
    Gurung A; Chakraborty R
    Can J Microbiol; 2009 Sep; 55(9):1040-8. PubMed ID: 19898546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The significance of pH in dictating the relative toxicities of chloride and copper to acidophilic bacteria.
    Falagán C; Johnson DB
    Res Microbiol; 2018 Dec; 169(10):552-557. PubMed ID: 30031071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of ferric iron by acidophilic heterotrophic bacteria: evidence for constitutive and inducible enzyme systems in Acidiphilium spp.
    Johnson DB; Bridge TA
    J Appl Microbiol; 2002; 92(2):315-21. PubMed ID: 11849360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suboxic deposition of ferric iron by bacteria in opposing gradients of Fe(II) and oxygen at circumneutral pH.
    Sobolev D; Roden EE
    Appl Environ Microbiol; 2001 Mar; 67(3):1328-34. PubMed ID: 11229928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indirect Redox Transformations of Iron, Copper, and Chromium Catalyzed by Extremely Acidophilic Bacteria.
    Johnson DB; Hedrich S; Pakostova E
    Front Microbiol; 2017; 8():211. PubMed ID: 28239375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic investigations of the reaction of an iron(III) octa-anionic porphyrin complex with hydrogen peroxide and the catalyzed oxidation of diammonium-2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate).
    Brausam A; Eigler S; Jux N; van Eldik R
    Inorg Chem; 2009 Aug; 48(16):7667-78. PubMed ID: 19601585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial acceleration of aerobic pyrite oxidation at circumneutral pH.
    Percak-Dennett E; He S; Converse B; Konishi H; Xu H; Corcoran A; Noguera D; Chan C; Bhattacharyya A; Borch T; Boyd E; Roden EE
    Geobiology; 2017 Sep; 15(5):690-703. PubMed ID: 28452176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competition of Fe(III) reduction and methanogenesis in an acidic fen.
    Reiche M; Torburg G; Küsel K
    FEMS Microbiol Ecol; 2008 Jul; 65(1):88-101. PubMed ID: 18559015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbiological monitoring of acid mine drainage treatment systems and aquatic surroundings using real-time PCR.
    Han JS; Kim CG
    Water Sci Technol; 2009; 59(11):2083-91. PubMed ID: 19494446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption of ferrous and ferric iron by extracellular polymeric substances (EPS) from acidophilic bacteria.
    Tapia JM; Muñoz J; González F; Blázquez ML; Ballester A
    Prep Biochem Biotechnol; 2013; 43(8):815-27. PubMed ID: 23876140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Goethite dissolution by acidophilic bacteria.
    Stanković S; Schippers A
    Front Microbiol; 2024; 15():1360018. PubMed ID: 38846564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.