These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1115 related articles for article (PubMed ID: 19712410)
1. Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment. Gremion F; Chatzinotas A; Kaufmann K; Von Sigler W; Harms H FEMS Microbiol Ecol; 2004 May; 48(2):273-83. PubMed ID: 19712410 [TBL] [Abstract][Full Text] [Related]
2. Resilience of the rhizosphere Pseudomonas and ammonia-oxidizing bacterial populations during phytoextraction of heavy metal polluted soil with poplar. Frey B; Pesaro M; Rüdt A; Widmer F Environ Microbiol; 2008 Jun; 10(6):1433-49. PubMed ID: 18279346 [TBL] [Abstract][Full Text] [Related]
3. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Nicol GW; Leininger S; Schleper C; Prosser JI Environ Microbiol; 2008 Nov; 10(11):2966-78. PubMed ID: 18707610 [TBL] [Abstract][Full Text] [Related]
4. 16S rDNA analysis reveals low microbial diversity in community level physiological profile assays. Ros M; Goberna M; Pascual JA; Klammer S; Insam H J Microbiol Methods; 2008 Mar; 72(3):221-6. PubMed ID: 18258321 [TBL] [Abstract][Full Text] [Related]
5. Acinetobacter diversity in environmental samples assessed by 16S rRNA gene PCR-DGGE fingerprinting. Vanbroekhoven K; Ryngaert A; Wattiau P; Mot R; Springael D FEMS Microbiol Ecol; 2004 Oct; 50(1):37-50. PubMed ID: 19712375 [TBL] [Abstract][Full Text] [Related]
6. Physiological and molecular characterization of a microbial community established in unsaturated, petroleum-contaminated soil. Kasai Y; Takahata Y; Hoaki T; Watanabe K Environ Microbiol; 2005 Jun; 7(6):806-18. PubMed ID: 15892700 [TBL] [Abstract][Full Text] [Related]
7. Impact of metal pollution and Thlaspi caerulescens growth on soil microbial communities. Epelde L; Becerril JM; Kowalchuk GA; Deng Y; Zhou J; Garbisu C Appl Environ Microbiol; 2010 Dec; 76(23):7843-53. PubMed ID: 20935131 [TBL] [Abstract][Full Text] [Related]
8. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Kirk JL; Klironomos JN; Lee H; Trevors JT Environ Pollut; 2005 Feb; 133(3):455-65. PubMed ID: 15519721 [TBL] [Abstract][Full Text] [Related]
9. Quantitative improvement of 16S rDNA DGGE analysis for soil bacterial community using real-time PCR. Ahn JH; Kim YJ; Kim T; Song HG; Kang C; Ka JO J Microbiol Methods; 2009 Aug; 78(2):216-22. PubMed ID: 19523498 [TBL] [Abstract][Full Text] [Related]
10. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Wang Y; Shi J; Wang H; Lin Q; Chen X; Chen Y Ecotoxicol Environ Saf; 2007 May; 67(1):75-81. PubMed ID: 16828162 [TBL] [Abstract][Full Text] [Related]
11. Impacts of 2,4-D application on soil microbial community structure and on populations associated with 2,4-D degradation. Macur RE; Wheeler JT; Burr MD; Inskeep WP Microbiol Res; 2007; 162(1):37-45. PubMed ID: 16814534 [TBL] [Abstract][Full Text] [Related]
12. Bulk soil and rhizosphere bacterial community PCR-DGGE profiles and beta-galactosidase activity as indicators of biological quality in soils contaminated by heavy metals and cultivated with Silene vulgaris (Moench) Garcke. Martínez-Iñigo MJ; Pérez-Sanz A; Ortiz I; Alonso J; Alarcón R; García P; Lobo MC Chemosphere; 2009 Jun; 75(10):1376-81. PubMed ID: 19345981 [TBL] [Abstract][Full Text] [Related]
13. Activity, diversity and population size of ammonia-oxidising bacteria in oil-contaminated landfarming soil. Kurola J; Salkinoja-Salonen M; Aarnio T; Hultman J; Romantschuk M FEMS Microbiol Lett; 2005 Sep; 250(1):33-8. PubMed ID: 16043309 [TBL] [Abstract][Full Text] [Related]
14. Diversity of iron oxidizers in wetland soils revealed by novel 16S rRNA primers targeting Gallionella-related bacteria. Wang J; Muyzer G; Bodelier PL; Laanbroek HJ ISME J; 2009 Jun; 3(6):715-25. PubMed ID: 19225553 [TBL] [Abstract][Full Text] [Related]
15. Do conventionally and biologically cultivated soils differ in bacterial diversity and community structure? Seghers D; Reheul D; Bulcke R; Verstraete W; Top EM Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3b):381-8. PubMed ID: 15954622 [TBL] [Abstract][Full Text] [Related]
16. Microbial ecological response of the intestinal flora of Peromyscus maniculatus and P. leucopus to heavy metal contamination. Coolon JD; Jones KL; Narayanan S; Wisely SM Mol Ecol; 2010 Mar; 19 Suppl 1():67-80. PubMed ID: 20331771 [TBL] [Abstract][Full Text] [Related]
17. Metabolic and phylogenetic analysis of microbial communities during phytoremediation of soil contaminated with weathered hydrocarbons and heavy metals. Palmroth MR; Koskinen PE; Kaksonen AH; Münster U; Pichtel J; Puhakka JA Biodegradation; 2007 Dec; 18(6):769-82. PubMed ID: 17372705 [TBL] [Abstract][Full Text] [Related]
18. Impacts of chelate-assisted phytoremediation on microbial community composition in the rhizosphere of a copper accumulator and non-accumulator. Chen Y; Wang Y; Wu W; Lin Q; Xue S Sci Total Environ; 2006 Mar; 356(1-3):247-55. PubMed ID: 15935447 [TBL] [Abstract][Full Text] [Related]
19. Significance of treated agrowaste residue and autochthonous inoculates (Arbuscular mycorrhizal fungi and Bacillus cereus) on bacterial community structure and phytoextraction to remediate soils contaminated with heavy metals. Azcón R; Medina A; Roldán A; Biró B; Vivas A Chemosphere; 2009 Apr; 75(3):327-34. PubMed ID: 19185328 [TBL] [Abstract][Full Text] [Related]
20. The selection of mixed microbial inocula in environmental biotechnology: example using petroleum contaminated tropical soils. Supaphol S; Panichsakpatana S; Trakulnaleamsai S; Tungkananuruk N; Roughjanajirapa P; O'Donnell AG J Microbiol Methods; 2006 Jun; 65(3):432-41. PubMed ID: 16226327 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]