These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 19712663)

  • 1. Determination of binding affinity of metal cofactor to the active site of methionine aminopeptidase based on quantitation of functional enzyme.
    Chai SC; Lu JP; Ye QZ
    Anal Biochem; 2009 Dec; 395(2):263-4. PubMed ID: 19712663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the stoichiometric metal activation of methionine aminopeptidase.
    Chai SC; Ye QZ
    BMC Biochem; 2009 Dec; 10():32. PubMed ID: 20017927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression and characterization of Mycobacterium tuberculosis methionine aminopeptidase type 1a.
    Lu JP; Ye QZ
    Bioorg Med Chem Lett; 2010 May; 20(9):2776-9. PubMed ID: 20363127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalysis and inhibition of Mycobacterium tuberculosis methionine aminopeptidase.
    Lu JP; Chai SC; Ye QZ
    J Med Chem; 2010 Feb; 53(3):1329-37. PubMed ID: 20038112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divalent metal binding properties of the methionyl aminopeptidase from Escherichia coli.
    D'souza VM; Bennett B; Copik AJ; Holz RC
    Biochemistry; 2000 Apr; 39(13):3817-26. PubMed ID: 10736182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical characterization of recombinant methionine aminopeptidases (MAPs) from Mycobacterium tuberculosis H37Rv.
    Narayanan SS; Nampoothiri KM
    Mol Cell Biochem; 2012 Jun; 365(1-2):191-202. PubMed ID: 22466806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyzing the catalytic role of Asp97 in the methionine aminopeptidase from Escherichia coli.
    Mitra S; Job KM; Meng L; Bennett B; Holz RC
    FEBS J; 2008 Dec; 275(24):6248-59. PubMed ID: 19019076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression and divalent metal binding properties of the methionyl aminopeptidase from Pyrococcus furiosus.
    Meng L; Ruebush S; D'souza VM; Copik AJ; Tsunasawa S; Holz RC
    Biochemistry; 2002 Jun; 41(23):7199-208. PubMed ID: 12044150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of monometalated methionine aminopeptidase: inhibitor discovery and crystallographic analysis.
    Huang M; Xie SX; Ma ZQ; Huang QQ; Nan FJ; Ye QZ
    J Med Chem; 2007 Nov; 50(23):5735-42. PubMed ID: 17948983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective targeting of the conserved active site cysteine of Mycobacterium tuberculosis methionine aminopeptidase with electrophilic reagents.
    Reddi R; Arya T; Kishor C; Gumpena R; Ganji RJ; Bhukya S; Addlagatta A
    FEBS J; 2014 Sep; 281(18):4240-8. PubMed ID: 24841365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and spectroscopic analysis of the catalytic role of H79 in the methionine aminopeptidase from Escherichia coli.
    Watterson SJ; Mitra S; Swierczek SI; Bennett B; Holz RC
    Biochemistry; 2008 Nov; 47(45):11885-93. PubMed ID: 18855426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural analysis of inhibition of Mycobacterium tuberculosis methionine aminopeptidase by bengamide derivatives.
    Lu JP; Yuan XH; Ye QZ
    Eur J Med Chem; 2012 Jan; 47(1):479-84. PubMed ID: 22118830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino-terminal extension present in the methionine aminopeptidase type 1c of Mycobacterium tuberculosis is indispensible for its activity.
    Kanudia P; Mittal M; Kumaran S; Chakraborti PK
    BMC Biochem; 2011 Jul; 12():35. PubMed ID: 21729287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the metal binding site in methionine aminopeptidase by density functional theory.
    Jørgensen AT; Norrby PO; Liljefors T
    J Comput Aided Mol Des; 2002 Mar; 16(3):167-79. PubMed ID: 12363216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of catalysis by monometalated methionine aminopeptidase.
    Ye QZ; Xie SX; Ma ZQ; Huang M; Hanzlik RP
    Proc Natl Acad Sci U S A; 2006 Jun; 103(25):9470-5. PubMed ID: 16769889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of Streptomyces griseus aminopeptidase with amino acid reaction products and their implications toward a catalytic mechanism.
    Gilboa R; Spungin-Bialik A; Wohlfahrt G; Schomburg D; Blumberg S; Shoham G
    Proteins; 2001 Sep; 44(4):490-504. PubMed ID: 11484227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acid residues involved in the functional integrity of Escherichia coli methionine aminopeptidase.
    Chiu CH; Lee CZ; Lin KS; Tam MF; Lin LY
    J Bacteriol; 1999 Aug; 181(15):4686-9. PubMed ID: 10419973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyzing the binding of Co(II)-specific inhibitors to the methionyl aminopeptidases from Escherichia coli and Pyrococcus furiosus.
    Mitra S; Sheppard G; Wang J; Bennett B; Holz RC
    J Biol Inorg Chem; 2009 May; 14(4):573-85. PubMed ID: 19198897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutation of H63 and its catalytic affect on the methionine aminopeptidase from Escherichia coli.
    Mitra S; Bennett B; Holz RC
    Biochim Biophys Acta; 2009 Jan; 1794(1):137-43. PubMed ID: 18952013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Which one among Zn(II), Co(II), Mn(II), and Fe(II) is the most efficient ion for the methionine aminopeptidase catalyzed reaction?
    Leopoldini M; Russo N; Toscano M
    J Am Chem Soc; 2007 Jun; 129(25):7776-84. PubMed ID: 17523636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.