BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 19712668)

  • 21. 5-Fluorouracil incorporated into DNA is excised by the Smug1 DNA glycosylase to reduce drug cytotoxicity.
    An Q; Robins P; Lindahl T; Barnes DE
    Cancer Res; 2007 Feb; 67(3):940-5. PubMed ID: 17283124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Disparity between DNA base excision repair in yeast and mammals: translational implications.
    Kelley MR; Kow YW; Wilson DM
    Cancer Res; 2003 Feb; 63(3):549-54. PubMed ID: 12566294
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nitrogen mustard- and half-mustard-induced damage in Escherichia coli requires different DNA repair pathways.
    De Alencar TA; Leitão AC; Lage C
    Mutat Res; 2005 Apr; 582(1-2):105-15. PubMed ID: 15781216
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antimetabolite radiosensitizers.
    Shewach DS; Lawrence TS
    J Clin Oncol; 2007 Sep; 25(26):4043-50. PubMed ID: 17827452
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of action of a new antitumor ribonucleoside, 1-(3-C-ethynyl-beta-D-ribo-pentofuranosyl)cytosine (ECyd, TAS-106), differs from that of 5-fluorouracil.
    Kazuno H; Shimamoto Y; Tsujimoto H; Fukushima M; Matsuda A; Sasaki T
    Oncol Rep; 2007 Jun; 17(6):1453-60. PubMed ID: 17487404
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Participation of BER and NER pathways in the repair of DNA lesions induced at low N-nitrosodiethylamine concentrations.
    Aiub CA; Mazzei JL; Pinto LF; Felzenszwalb I
    Toxicol Lett; 2004 Dec; 154(1-2):133-42. PubMed ID: 15475187
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The target cell determinants of the antitumor actions of 5-FU: does FU incorporation into RNA play a role?
    Mandel HG
    Cancer Treat Rep; 1981; 65 Suppl 3():63-71. PubMed ID: 6179616
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DNA repair deficiency and BPDE-induced chromosomal alterations in CHO cells.
    Meschini R; Marotta E; Berni A; Filippi S; Fiore M; Mancinelli P; Natarajan AT; Palitti F
    Mutat Res; 2008 Jan; 637(1-2):93-100. PubMed ID: 17720205
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The RAD9-dependent gene trans-activation is required for excision repair of active genes but not for repair of non-transcribed DNA.
    Al-Moghrabi NM; Al-Sharif IS; Aboussekhra A
    Mutat Res; 2009 Apr; 663(1-2):60-8. PubMed ID: 19428371
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nuclear translocation contributes to regulation of DNA excision repair activities.
    Knudsen NØ; Andersen SD; Lützen A; Nielsen FC; Rasmussen LJ
    DNA Repair (Amst); 2009 Jun; 8(6):682-9. PubMed ID: 19376751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Participation of DNA repair in the response to 5-fluorouracil.
    Wyatt MD; Wilson DM
    Cell Mol Life Sci; 2009 Mar; 66(5):788-99. PubMed ID: 18979208
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Autophagy Roles in the Modulation of DNA Repair Pathways.
    Gomes LR; Menck CFM; Leandro GS
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29112132
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA base repair--recognition and initiation of catalysis.
    Dalhus B; Laerdahl JK; Backe PH; Bjørås M
    FEMS Microbiol Rev; 2009 Nov; 33(6):1044-78. PubMed ID: 19659577
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preferential post-replication repair of DNA lesions situated on the leading strand of plasmids in Escherichia coli.
    Bichara M; Fuchs RP; Cordonnier A; Lambert IB
    Mol Microbiol; 2009 Jan; 71(2):305-14. PubMed ID: 19017273
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mismatch repair proficiency and in vitro response to 5-fluorouracil.
    Carethers JM; Chauhan DP; Fink D; Nebel S; Bresalier RS; Howell SB; Boland CR
    Gastroenterology; 1999 Jul; 117(1):123-31. PubMed ID: 10381918
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Zebrafish as a model system to study DNA damage and repair.
    Pei DS; Strauss PR
    Mutat Res; 2013; 743-744():151-159. PubMed ID: 23211879
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of Base Excision Repair Pathway in the Processing of Complex DNA Damage Generated by Oxidative Stress and Anticancer Drugs.
    Baiken Y; Kanayeva D; Taipakova S; Groisman R; Ishchenko AA; Begimbetova D; Matkarimov B; Saparbaev M
    Front Cell Dev Biol; 2020; 8():617884. PubMed ID: 33553154
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Base excision repair pathway is involved in the repair of lesions generated by flavonoid-enriched fractions of pepper tree (Schinus terebinthifolius, Raddi) stem bark.
    Varela-Barca FN; Agnez-Lima LF; de Medeiros SR
    Environ Mol Mutagen; 2007 Oct; 48(8):672-81. PubMed ID: 17722088
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Base excision repair imbalance in colorectal cancer has prognostic value and modulates response to chemotherapy.
    Leguisamo NM; Gloria HC; Kalil AN; Martins TV; Azambuja DB; Meira LB; Saffi J
    Oncotarget; 2017 Aug; 8(33):54199-54214. PubMed ID: 28903334
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Repair of DNA damage induced by anthanthrene, a polycyclic aromatic hydrocarbon (PAH) without bay or fjord regions.
    Desler C; Johannessen C; Rasmussen LJ
    Chem Biol Interact; 2009 Feb; 177(3):212-7. PubMed ID: 19046955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.