These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Postnatal development of the organ of Corti in dominant-negative Gjb2 transgenic mice. Inoshita A; Iizuka T; Okamura HO; Minekawa A; Kojima K; Furukawa M; Kusunoki T; Ikeda K Neuroscience; 2008 Oct; 156(4):1039-47. PubMed ID: 18793701 [TBL] [Abstract][Full Text] [Related]
3. Transgenic expression of a dominant-negative connexin26 causes degeneration of the organ of Corti and non-syndromic deafness. Kudo T; Kure S; Ikeda K; Xia AP; Katori Y; Suzuki M; Kojima K; Ichinohe A; Suzuki Y; Aoki Y; Kobayashi T; Matsubara Y Hum Mol Genet; 2003 May; 12(9):995-1004. PubMed ID: 12700168 [TBL] [Abstract][Full Text] [Related]
4. Active cochlear amplification is dependent on supporting cell gap junctions. Zhu Y; Liang C; Chen J; Zong L; Chen GD; Zhao HB Nat Commun; 2013; 4():1786. PubMed ID: 23653198 [TBL] [Abstract][Full Text] [Related]
5. Activity-dependent regulation of prestin expression in mouse outer hair cells. Song Y; Xia A; Lee HY; Wang R; Ricci AJ; Oghalai JS J Neurophysiol; 2015 Jun; 113(10):3531-42. PubMed ID: 25810486 [TBL] [Abstract][Full Text] [Related]
6. The spatial distribution pattern of Connexin26 expression in supporting cells and its role in outer hair cell survival. Chen S; Xu K; Xie L; Cao HY; Wu X; Du AN; He ZH; Lin X; Sun Y; Kong WJ Cell Death Dis; 2018 Dec; 9(12):1180. PubMed ID: 30518746 [TBL] [Abstract][Full Text] [Related]
7. Prestin kinetics and corresponding frequency dependence augment during early development of the outer hair cell within the mouse organ of Corti. Bai JP; Navaratnam D; Santos-Sacchi J Sci Rep; 2019 Nov; 9(1):16460. PubMed ID: 31712635 [TBL] [Abstract][Full Text] [Related]
8. Dominant negative connexin26 mutation R75W causing severe hearing loss influences normal programmed cell death in postnatal organ of Corti. Inoshita A; Karasawa K; Funakubo M; Miwa A; Ikeda K; Kamiya K BMC Genet; 2014 Jan; 15():1. PubMed ID: 24387126 [TBL] [Abstract][Full Text] [Related]
9. Connexin26 (GJB2) deficiency reduces active cochlear amplification leading to late-onset hearing loss. Zhu Y; Chen J; Liang C; Zong L; Chen J; Jones RO; Zhao HB Neuroscience; 2015 Jan; 284():719-729. PubMed ID: 25451287 [TBL] [Abstract][Full Text] [Related]
10. Reduced electromotility of outer hair cells associated with connexin-related forms of deafness: an in silico study of a cochlear network mechanism. Mistrík P; Ashmore JF J Assoc Res Otolaryngol; 2010 Dec; 11(4):559-71. PubMed ID: 20635191 [TBL] [Abstract][Full Text] [Related]
11. Functional prestin transduction of immature outer hair cells from normal and prestin-null mice. Xia A; Wooltorton JR; Palmer DJ; Ng P; Pereira FA; Eatock RA; Oghalai JS J Assoc Res Otolaryngol; 2008 Sep; 9(3):307-20. PubMed ID: 18506528 [TBL] [Abstract][Full Text] [Related]
12. A Gap-Junction Mutation Reveals That Outer Hair Cell Extracellular Receptor Potentials Drive High-Frequency Cochlear Amplification. Levic S; Lukashkina VA; Simões P; Lukashkin AN; Russell IJ J Neurosci; 2022 Oct; 42(42):7875-7884. PubMed ID: 36261265 [TBL] [Abstract][Full Text] [Related]
13. Modulation of outer hair cell electromotility by cochlear supporting cells and gap junctions. Yu N; Zhao HB PLoS One; 2009 Nov; 4(11):e7923. PubMed ID: 19936276 [TBL] [Abstract][Full Text] [Related]
14. Deformation of the Outer Hair Cells and the Accumulation of Caveolin-2 in Connexin 26 Deficient Mice. Anzai T; Fukunaga I; Hatakeyama K; Fujimoto A; Kobayashi K; Nishikawa A; Aoki T; Noda T; Minowa O; Ikeda K; Kamiya K PLoS One; 2015; 10(10):e0141258. PubMed ID: 26492081 [TBL] [Abstract][Full Text] [Related]
15. Timed conditional null of connexin26 in mice reveals temporary requirements of connexin26 in key cochlear developmental events before the onset of hearing. Chang Q; Tang W; Kim Y; Lin X Neurobiol Dis; 2015 Jan; 73():418-27. PubMed ID: 25251605 [TBL] [Abstract][Full Text] [Related]
16. CD1 hearing-impaired mice. II. Group latencies and optimal f2/f1 ratios of distortion product otoacoustic emissions, and scanning electron microscopy. Le Calvez S; Guilhaume A; Romand R; Aran JM; Avan P Hear Res; 1998 Jun; 120(1-2):51-61. PubMed ID: 9667430 [TBL] [Abstract][Full Text] [Related]
17. Deficiency of transcription factor Brn4 disrupts cochlear gap junction plaques in a model of DFN3 non-syndromic deafness. Kidokoro Y; Karasawa K; Minowa O; Sugitani Y; Noda T; Ikeda K; Kamiya K PLoS One; 2014; 9(9):e108216. PubMed ID: 25259580 [TBL] [Abstract][Full Text] [Related]
18. Prestin and electromotility may serve multiple roles in cochlear outer hair cells. Zheng J; Takahashi S; Zhou Y; Cheatham MA Hear Res; 2022 Sep; 423():108428. PubMed ID: 34987016 [TBL] [Abstract][Full Text] [Related]
19. Expression and localization of prestin and the sugar transporter GLUT-5 during development of electromotility in cochlear outer hair cells. Belyantseva IA; Adler HJ; Curi R; Frolenkov GI; Kachar B J Neurosci; 2000 Dec; 20(24):RC116. PubMed ID: 11125015 [TBL] [Abstract][Full Text] [Related]
20. Prestin regulation and function in residual outer hair cells after noise-induced hearing loss. Xia A; Song Y; Wang R; Gao SS; Clifton W; Raphael P; Chao SI; Pereira FA; Groves AK; Oghalai JS PLoS One; 2013; 8(12):e82602. PubMed ID: 24376553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]