BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

576 related articles for article (PubMed ID: 19713546)

  • 41. HAND2 Target Gene Regulatory Networks Control Atrioventricular Canal and Cardiac Valve Development.
    Laurent F; Girdziusaite A; Gamart J; Barozzi I; Osterwalder M; Akiyama JA; Lincoln J; Lopez-Rios J; Visel A; Zuniga A; Zeller R
    Cell Rep; 2017 May; 19(8):1602-1613. PubMed ID: 28538179
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cell biology of cardiac cushion development.
    Person AD; Klewer SE; Runyan RB
    Int Rev Cytol; 2005; 243():287-335. PubMed ID: 15797462
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Periostin is required for maturation and extracellular matrix stabilization of noncardiomyocyte lineages of the heart.
    Snider P; Hinton RB; Moreno-Rodriguez RA; Wang J; Rogers R; Lindsley A; Li F; Ingram DA; Menick D; Field L; Firulli AB; Molkentin JD; Markwald R; Conway SJ
    Circ Res; 2008 Apr; 102(7):752-60. PubMed ID: 18296617
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hypoxia promotes primitive glycosaminoglycan-rich extracellular matrix composition in developing heart valves.
    Amofa D; Hulin A; Nakada Y; Sadek HA; Yutzey KE
    Am J Physiol Heart Circ Physiol; 2017 Dec; 313(6):H1143-H1154. PubMed ID: 28842437
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Disrupted Slit-Robo signalling results in membranous ventricular septum defects and bicuspid aortic valves.
    Mommersteeg MT; Yeh ML; Parnavelas JG; Andrews WD
    Cardiovasc Res; 2015 Apr; 106(1):55-66. PubMed ID: 25691540
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Macrophage lineages in heart valve development and disease.
    Kim AJ; Xu N; Yutzey KE
    Cardiovasc Res; 2021 Feb; 117(3):663-673. PubMed ID: 32170926
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Expression and deposition of fibrous extracellular matrix proteins in cardiac valves during chick development.
    Tan H; Junor L; Price RL; Norris RA; Potts JD; Goodwin RL
    Microsc Microanal; 2011 Feb; 17(1):91-100. PubMed ID: 21205426
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Notch signaling in cardiac valve development and disease.
    MacGrogan D; Luna-Zurita L; de la Pompa JL
    Birth Defects Res A Clin Mol Teratol; 2011 Jun; 91(6):449-59. PubMed ID: 21563298
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular and developmental mechanisms of congenital heart valve disease.
    Lincoln J; Yutzey KE
    Birth Defects Res A Clin Mol Teratol; 2011 Jun; 91(6):526-34. PubMed ID: 21538813
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hyaluronan: a critical regulator of endothelial-to-mesenchymal transition during cardiac valve formation.
    Lagendijk AK; Szabó A; Merks RM; Bakkers J
    Trends Cardiovasc Med; 2013 Jul; 23(5):135-42. PubMed ID: 23295082
    [TBL] [Abstract][Full Text] [Related]  

  • 51. VEGF and RANKL regulation of NFATc1 in heart valve development.
    Combs MD; Yutzey KE
    Circ Res; 2009 Sep; 105(6):565-74. PubMed ID: 19661463
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synergistic regulation of p53 by Mdm2 and Mdm4 is critical in cardiac endocardial cushion morphogenesis during heart development.
    Zhang Q; He X; Chen L; Zhang C; Gao X; Yang Z; Liu G
    J Pathol; 2012 Nov; 228(3):416-28. PubMed ID: 22821713
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Form and function of developing heart valves: coordination by extracellular matrix and growth factor signaling.
    Schroeder JA; Jackson LF; Lee DC; Camenisch TD
    J Mol Med (Berl); 2003 Jul; 81(7):392-403. PubMed ID: 12827270
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transcriptional regulation of heart valve development and disease.
    Wirrig EE; Yutzey KE
    Cardiovasc Pathol; 2011; 20(3):162-7. PubMed ID: 20705485
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Outflow tract cushions perform a critical valve-like function in the early embryonic heart requiring BMPRIA-mediated signaling in cardiac neural crest.
    Nomura-Kitabayashi A; Phoon CK; Kishigami S; Rosenthal J; Yamauchi Y; Abe K; Yamamura K; Samtani R; Lo CW; Mishina Y
    Am J Physiol Heart Circ Physiol; 2009 Nov; 297(5):H1617-28. PubMed ID: 19717734
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Embryonic development of bicuspid aortic valves.
    Soto-Navarrete MT; López-Unzu MÁ; Durán AC; Fernández B
    Prog Cardiovasc Dis; 2020; 63(4):407-418. PubMed ID: 32592706
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Intracardiac flow dynamics regulate atrioventricular valve morphogenesis.
    Kalogirou S; Malissovas N; Moro E; Argenton F; Stainier DY; Beis D
    Cardiovasc Res; 2014 Oct; 104(1):49-60. PubMed ID: 25100766
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular regulation of atrioventricular valvuloseptal morphogenesis.
    Eisenberg LM; Markwald RR
    Circ Res; 1995 Jul; 77(1):1-6. PubMed ID: 7788867
    [TBL] [Abstract][Full Text] [Related]  

  • 59. TGFβ and BMP signaling in cardiac cushion formation: lessons from mice and chicken.
    Kruithof BP; Duim SN; Moerkamp AT; Goumans MJ
    Differentiation; 2012 Jul; 84(1):89-102. PubMed ID: 22656450
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nonbiased Molecular Screening Identifies Novel Molecular Regulators of Fibrogenic and Proliferative Signaling in Myxomatous Mitral Valve Disease.
    Thalji NM; Hagler MA; Zhang H; Casaclang-Verzosa G; Nair AA; Suri RM; Miller JD
    Circ Cardiovasc Genet; 2015 Jun; 8(3):516-28. PubMed ID: 25814644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.