BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

576 related articles for article (PubMed ID: 19713546)

  • 81. The inter-relationship of periostin, TGF beta, and BMP in heart valve development and valvular heart diseases.
    Conway SJ; Doetschman T; Azhar M
    ScientificWorldJournal; 2011 Jul; 11():1509-24. PubMed ID: 21805020
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Development of the human heart.
    Buijtendijk MFJ; Barnett P; van den Hoff MJB
    Am J Med Genet C Semin Med Genet; 2020 Mar; 184(1):7-22. PubMed ID: 32048790
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Heart valve structure and function in development and disease.
    Hinton RB; Yutzey KE
    Annu Rev Physiol; 2011; 73():29-46. PubMed ID: 20809794
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Endocardial-to-mesenchymal transformation and mesenchymal cell colonization at the onset of human cardiac valve development.
    Monaghan MG; Linneweh M; Liebscher S; Van Handel B; Layland SL; Schenke-Layland K
    Development; 2016 Feb; 143(3):473-82. PubMed ID: 26674310
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Fate of the atrioventricular endocardial cushions in the developing chick heart.
    Chin C; Gandour-Edwards R; Oltjen S; Choy M
    Pediatr Res; 1992 Oct; 32(4):390-3. PubMed ID: 1437388
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis.
    Goddard LM; Duchemin AL; Ramalingan H; Wu B; Chen M; Bamezai S; Yang J; Li L; Morley MP; Wang T; Scherrer-Crosbie M; Frank DB; Engleka KA; Jameson SC; Morrisey EE; Carroll TJ; Zhou B; Vermot J; Kahn ML
    Dev Cell; 2017 Nov; 43(3):274-289.e5. PubMed ID: 29056552
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Cardiac valve cells and their microenvironment--insights from in vitro studies.
    Wang H; Leinwand LA; Anseth KS
    Nat Rev Cardiol; 2014 Dec; 11(12):715-27. PubMed ID: 25311230
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Mathematical modeling of flow-generated forces in an in vitro system of cardiac valve development.
    Biechler SV; Potts JD; Yost MJ; Junor L; Goodwin RL; Weidner JW
    Ann Biomed Eng; 2010 Jan; 38(1):109-17. PubMed ID: 19862617
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Lineage Tracing Identifies Dynamic Contribution of Endothelial Cells to Cardiac Valve Mesenchyme During Development.
    Yang X; Lu F
    J Histochem Cytochem; 2023 Dec; 71(12):675-687. PubMed ID: 37909423
    [TBL] [Abstract][Full Text] [Related]  

  • 90. UDP-glucose dehydrogenase polymorphisms from patients with congenital heart valve defects disrupt enzyme stability and quaternary assembly.
    Hyde AS; Farmer EL; Easley KE; van Lammeren K; Christoffels VM; Barycki JJ; Bakkers J; Simpson MA
    J Biol Chem; 2012 Sep; 287(39):32708-16. PubMed ID: 22815472
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Effect of altered haemodynamics on the developing mitral valve in chick embryonic heart.
    Pang KL; Parnall M; Loughna S
    J Mol Cell Cardiol; 2017 Jul; 108():114-126. PubMed ID: 28576718
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Partitioning the heart: mechanisms of cardiac septation and valve development.
    Lin CJ; Lin CY; Chen CH; Zhou B; Chang CP
    Development; 2012 Sep; 139(18):3277-99. PubMed ID: 22912411
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Role of angiogenetic factors in cardiac valve homeostasis and disease.
    Hakuno D; Kimura N; Yoshioka M; Fukuda K
    J Cardiovasc Transl Res; 2011 Dec; 4(6):727-40. PubMed ID: 21866383
    [TBL] [Abstract][Full Text] [Related]  

  • 94. klf2a couples mechanotransduction and zebrafish valve morphogenesis through fibronectin synthesis.
    Steed E; Faggianelli N; Roth S; Ramspacher C; Concordet JP; Vermot J
    Nat Commun; 2016 May; 7():11646. PubMed ID: 27221222
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Coordinating tissue interactions: Notch signaling in cardiac development and disease.
    de la Pompa JL; Epstein JA
    Dev Cell; 2012 Feb; 22(2):244-54. PubMed ID: 22340493
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Quantification of embryonic atrioventricular valve biomechanics during morphogenesis.
    Buskohl PR; Gould RA; Butcher JT
    J Biomech; 2012 Mar; 45(5):895-902. PubMed ID: 22169154
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Understanding the cell fate and behavior of progenitors at the origin of the mouse cardiac mitral valve.
    Farhat B; Bordeu I; Jagla B; Ibrahim S; Stefanovic S; Blanc H; Loulier K; Simons BD; Beaurepaire E; Livet J; Pucéat M
    Dev Cell; 2024 Feb; 59(3):339-350.e4. PubMed ID: 38198889
    [TBL] [Abstract][Full Text] [Related]  

  • 98. β-Catenin regulates endocardial cushion growth by suppressing p21.
    Liu H; Lu P; He S; Luo Y; Fang Y; Benkaci S; Wu B; Wang Y; Zhou B
    Life Sci Alliance; 2023 Sep; 6(9):. PubMed ID: 37385754
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Structural remodelling of the heart valves extracellular matrix during embryo development.
    Falla Zuñiga LF; Muñoz Cerón YS; Salazar L
    Anat Histol Embryol; 2021 Jan; 50(1):206-211. PubMed ID: 32797691
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Epigenetic factors and cardiac development.
    van Weerd JH; Koshiba-Takeuchi K; Kwon C; Takeuchi JK
    Cardiovasc Res; 2011 Jul; 91(2):203-11. PubMed ID: 21606181
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.