These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 19713579)

  • 1. Determination of the effective Young's modulus of vertically aligned carbon nanotube arrays: a simple nanotube-based varactor.
    Olofsson N; Ek-Weis J; Eriksson A; Idda T; Campbell EE
    Nanotechnology; 2009 Sep; 20(38):385710. PubMed ID: 19713579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electromechanical actuation of macroscopic carbon nanotube structures: mats and aligned ribbons.
    Suppiger D; Busato S; Ermanni P; Motta M; Windle A
    Phys Chem Chem Phys; 2009 Jul; 11(25):5180-5. PubMed ID: 19562152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust determination of Young's modulus of individual carbon nanotubes by quasi-static interaction with Lorentz forces.
    Löffler M; Weissker U; Mühl T; Gemming T; Büchner B
    Ultramicroscopy; 2011 Jan; 111(2):155-8. PubMed ID: 21185460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tight-binding molecular dynamics study of the role of defects on carbon nanotube moduli and failure.
    Haskins RW; Maier RS; Ebeling RM; Marsh CP; Majure DL; Bednar AJ; Welch CR; Barker BC; Wu DT
    J Chem Phys; 2007 Aug; 127(7):074708. PubMed ID: 17718628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulsed growth of vertically aligned nanotube arrays with variable density.
    Jackson JJ; Puretzky AA; More KL; Rouleau CM; Eres G; Geohegan DB
    ACS Nano; 2010 Dec; 4(12):7573-81. PubMed ID: 21128670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular beam-controlled nucleation and growth of vertically aligned single-wall carbon nanotube arrays.
    Eres G; Kinkhabwala AA; Cui H; Geohegan DB; Puretzky AA; Lowndes DH
    J Phys Chem B; 2005 Sep; 109(35):16684-94. PubMed ID: 16853123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-yield growth of vertically aligned carbon nanotubes on a continuously moving substrate.
    Guzmán de Villoria R; Figueredo SL; Hart AJ; Steiner SA; Slocum AH; Wardle BL
    Nanotechnology; 2009 Oct; 20(40):405611. PubMed ID: 19752503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale memory cell based on a nanoelectromechanical switched capacitor.
    Jang JE; Cha SN; Choi YJ; Kang DJ; Butler TP; Hasko DG; Jung JE; Kim JM; Amaratunga GA
    Nat Nanotechnol; 2008 Jan; 3(1):26-30. PubMed ID: 18654446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SWNT array resonant gate MOS transistor.
    Arun A; Campidelli S; Filoramo A; Derycke V; Salet P; Ionescu AM; Goffman MF
    Nanotechnology; 2011 Feb; 22(5):055204. PubMed ID: 21178263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aligned arrays of nanotubes and segmented nanotubes on substrates fabricated by electrodeposition onto nanorods.
    Sander MS; Gao H
    J Am Chem Soc; 2005 Sep; 127(35):12158-9. PubMed ID: 16131158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical modification of vertically aligned carbon nanotube arrays.
    Ye XR; Chen LH; Wang C; Aubuchon JF; Chen IC; Gapin AI; Talbot JB; Jin S
    J Phys Chem B; 2006 Jul; 110(26):12938-42. PubMed ID: 16805595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. V2O5 nanofibre sheet actuators.
    Gu G; Schmid M; Chiu PW; Minett A; Fraysse J; Kim GT; Roth S; Kozlov M; Muñoz E; Baughman RH
    Nat Mater; 2003 May; 2(5):316-9. PubMed ID: 12704380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Super-compressible foamlike carbon nanotube films.
    Cao A; Dickrell PL; Sawyer WG; Ghasemi-Nejhad MN; Ajayan PM
    Science; 2005 Nov; 310(5752):1307-10. PubMed ID: 16311330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved hydrophobicity of carbon nanotube arrays with micropatterning.
    Lu SH; Ni Tun MH; Mei ZJ; Chia GH; Lim X; Sow CH
    Langmuir; 2009 Nov; 25(21):12806-11. PubMed ID: 19630383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene nanoribbon composites.
    Rafiee MA; Lu W; Thomas AV; Zandiatashbar A; Rafiee J; Tour JM; Koratkar NA
    ACS Nano; 2010 Dec; 4(12):7415-20. PubMed ID: 21080652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth mechanism of long aligned multiwall carbon nanotube arrays by water-assisted chemical vapor deposition.
    Yun Y; Shanov V; Tu Y; Subramaniam S; Schulz MJ
    J Phys Chem B; 2006 Nov; 110(47):23920-5. PubMed ID: 17125359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size control of highly ordered HfO2 nanotube arrays and a possible growth mechanism.
    Qiu X; Howe JY; Cardoso MB; Polat O; Heller WT; Parans Paranthaman M
    Nanotechnology; 2009 Nov; 20(45):455601. PubMed ID: 19822933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterned arrays of vertically aligned carbon nanotube microelectrodes on carbon films prepared by thermal chemical vapor deposition.
    Liu X; Baronian KH; Downard AJ
    Anal Chem; 2008 Nov; 80(22):8835-9. PubMed ID: 18947203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aligned carbon nanotube arrays formed by cutting a polymer resin--nanotube composite.
    Ajayan PM; Stephan O; Colliex C; Trauth D
    Science; 1994 Aug; 265(5176):1212-4. PubMed ID: 17787587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A generic organometallic approach toward ultra-strong carbon nanotube polymer composites.
    Blake R; Gun'ko YK; Coleman J; Cadek M; Fonseca A; Nagy JB; Blau WJ
    J Am Chem Soc; 2004 Aug; 126(33):10226-7. PubMed ID: 15315418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.