These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 19714201)

  • 1. FLORA: a novel method to predict protein function from structure in diverse superfamilies.
    Redfern OC; Dessailly BH; Dallman TJ; Sillitoe I; Orengo CA
    PLoS Comput Biol; 2009 Aug; 5(8):e1000485. PubMed ID: 19714201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1,000 structures and more from the MCSG.
    Lee D; de Beer TA; Laskowski RA; Thornton JM; Orengo CA
    BMC Struct Biol; 2011 Jan; 11():2. PubMed ID: 21219649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The CATH hierarchy revisited-structural divergence in domain superfamilies and the continuity of fold space.
    Cuff A; Redfern OC; Greene L; Sillitoe I; Lewis T; Dibley M; Reid A; Pearl F; Dallman T; Todd A; Garratt R; Thornton J; Orengo C
    Structure; 2009 Aug; 17(8):1051-62. PubMed ID: 19679085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural diversity of domain superfamilies in the CATH database.
    Reeves GA; Dallman TJ; Redfern OC; Akpor A; Orengo CA
    J Mol Biol; 2006 Jul; 360(3):725-41. PubMed ID: 16780872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distance-based identification of structure motifs in proteins using constrained frequent subgraph mining.
    Huan J; Bandyopadhyay D; Prins J; Snoeyink J; Tropsha A; Wang W
    Comput Syst Bioinformatics Conf; 2006; ():227-38. PubMed ID: 17369641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring dynamics of protein structure determination and homology-based prediction to estimate the number of superfamilies and folds.
    Sadreyev RI; Grishin NV
    BMC Struct Biol; 2006 Mar; 6():6. PubMed ID: 16549009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of function in protein superfamilies, from a structural perspective.
    Todd AE; Orengo CA; Thornton JM
    J Mol Biol; 2001 Apr; 307(4):1113-43. PubMed ID: 11286560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local structure based method for prediction of the biochemical function of proteins: Applications to glycoside hydrolases.
    Parasuram R; Mills CL; Wang Z; Somasundaram S; Beuning PJ; Ondrechen MJ
    Methods; 2016 Jan; 93():51-63. PubMed ID: 26564235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining specificity determining and conserved residues improves functional site prediction.
    Kalinina OV; Gelfand MS; Russell RB
    BMC Bioinformatics; 2009 Jun; 10():174. PubMed ID: 19508719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of substructural variation in families of enzymatic proteins with applications to protein function prediction.
    Bryant DH; Moll M; Chen BY; Fofanov VY; Kavraki LE
    BMC Bioinformatics; 2010 May; 11():242. PubMed ID: 20459833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional annotation by sequence-weighted structure alignments: statistical analysis and case studies from the Protein 3000 structural genomics project in Japan.
    Standley DM; Toh H; Nakamura H
    Proteins; 2008 Sep; 72(4):1333-51. PubMed ID: 18384072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional classification of CATH superfamilies: a domain-based approach for protein function annotation.
    Das S; Lee D; Sillitoe I; Dawson NL; Lees JG; Orengo CA
    Bioinformatics; 2015 Nov; 31(21):3460-7. PubMed ID: 26139634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic discovery of cross-family sequence features associated with protein function.
    Brameier M; Haan J; Krings A; MacCallum RM
    BMC Bioinformatics; 2006 Jan; 7():16. PubMed ID: 16409628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional classification of protein structures by local structure matching in graph representation.
    Mills CL; Garg R; Lee JS; Tian L; Suciu A; Cooperman GD; Beuning PJ; Ondrechen MJ
    Protein Sci; 2018 Jun; 27(6):1125-1135. PubMed ID: 29604149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated construction of structural motifs for predicting functional sites on protein structures.
    Liang MP; Brutlag DL; Altman RB
    Pac Symp Biocomput; 2003; ():204-15. PubMed ID: 12603029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PSI-2: structural genomics to cover protein domain family space.
    Dessailly BH; Nair R; Jaroszewski L; Fajardo JE; Kouranov A; Lee D; Fiser A; Godzik A; Rost B; Orengo C
    Structure; 2009 Jun; 17(6):869-81. PubMed ID: 19523904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress of structural genomics initiatives: an analysis of solved target structures.
    Todd AE; Marsden RL; Thornton JM; Orengo CA
    J Mol Biol; 2005 May; 348(5):1235-60. PubMed ID: 15854658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CATH-Gene3D: Generation of the Resource and Its Use in Obtaining Structural and Functional Annotations for Protein Sequences.
    Dawson NL; Sillitoe I; Lees JG; Lam SD; Orengo CA
    Methods Mol Biol; 2017; 1558():79-110. PubMed ID: 28150234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conserved spatially interacting motifs of protein superfamilies: application to fold recognition and function annotation of genome data.
    Bhaduri A; Ravishankar R; Sowdhamini R
    Proteins; 2004 Mar; 54(4):657-70. PubMed ID: 14997562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.