These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 19714301)

  • 1. Si complexes in calcium phosphate biomaterials.
    Gillespie P; Wu G; Sayer M; Stott MJ
    J Mater Sci Mater Med; 2010 Jan; 21(1):99-108. PubMed ID: 19714301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and composition of silicon-stabilized tricalcium phosphate.
    Sayer M; Stratilatov AD; Reid J; Calderin L; Stott MJ; Yin X; MacKenzie M; Smith TJ; Hendry JA; Langstaff SD
    Biomaterials; 2003 Feb; 24(3):369-82. PubMed ID: 12423592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase formation and evolution in the silicon substituted tricalcium phosphate/apatite system.
    Reid JW; Pietak A; Sayer M; Dunfield D; Smith TJ
    Biomaterials; 2005 Jun; 26(16):2887-97. PubMed ID: 15603784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Furthering the understanding of silicate-substitution in α-tricalcium phosphate: an X-ray diffraction, X-ray fluorescence and solid-state nuclear magnetic resonance study.
    Duncan J; Hayakawa S; Osaka A; MacDonald JF; Hanna JV; Skakle JM; Gibson IR
    Acta Biomater; 2014 Mar; 10(3):1443-50. PubMed ID: 24287162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silicon substitution in the calcium phosphate bioceramics.
    Pietak AM; Reid JW; Stott MJ; Sayer M
    Biomaterials; 2007 Oct; 28(28):4023-32. PubMed ID: 17544500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional atomic force microscopy investigation of osteopontin affinity for silicon stabilized tricalcium phosphate bioceramic surfaces.
    Pietak AM; Sayer M
    Biomaterials; 2006 Jan; 27(1):3-14. PubMed ID: 16011845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical characterization of silicon-substituted hydroxyapatite.
    Gibson IR; Best SM; Bonfield W
    J Biomed Mater Res; 1999 Mar; 44(4):422-8. PubMed ID: 10397946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resorbable bioceramics based on stabilized calcium phosphates. Part I: rational design, sample preparation and material characterization.
    Langstaff S; Sayer M; Smith TJ; Pugh SM; Hesp SA; Thompson WT
    Biomaterials; 1999 Sep; 20(18):1727-41. PubMed ID: 10503974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron spin resonance in silicon substituted apatite and tricalcium phosphate.
    Pietak AM; Reid JW; Sayer M
    Biomaterials; 2005 Jun; 26(18):3819-30. PubMed ID: 15626430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fine structure analysis and sintering properties of Si-doped hydroxyapatite.
    Qiu ZY; Li G; Zhang YQ; Liu J; Hu W; Ma J; Zhang SM
    Biomed Mater; 2012 Aug; 7(4):045009. PubMed ID: 22652464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The thermal stability of hydroxyapatite in biphasic calcium phosphate ceramics.
    Nilen RW; Richter PW
    J Mater Sci Mater Med; 2008 Apr; 19(4):1693-702. PubMed ID: 17899322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase development and sintering behaviour of biphasic HA-TCP calcium phosphate materials prepared from hydroxyapatite and bioactive glass.
    Behnamghader A; Bagheri N; Raissi B; Moztarzadeh F
    J Mater Sci Mater Med; 2008 Jan; 19(1):197-201. PubMed ID: 17597356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Si substitution on the reactivity of α-tricalcium phosphate.
    Motisuke M; Mestres G; Renó CO; Carrodeguas RG; Zavaglia CAC; Ginebra MP
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():816-821. PubMed ID: 28415534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Mg and Si co-substitution on microstructure and strength of tricalcium phosphate ceramics.
    García-Páez IH; Carrodeguas RG; De Aza AH; Baudín C; Pena P
    J Mech Behav Biomed Mater; 2014 Feb; 30():1-15. PubMed ID: 24216308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response.
    Balamurugan A; Rebelo AH; Lemos AF; Rocha JH; Ventura JM; Ferreira JM
    Dent Mater; 2008 Oct; 24(10):1374-80. PubMed ID: 18417203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: State of the art and current applications.
    Bellucci D; Sola A; Cannillo V
    J Biomed Mater Res A; 2016 Apr; 104(4):1030-56. PubMed ID: 26646669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of single-phase silicon-substituted alpha-tricalcium phosphate.
    Reid JW; Tuck L; Sayer M; Fargo K; Hendry JA
    Biomaterials; 2006 May; 27(15):2916-25. PubMed ID: 16448694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface modification of biomaterials for conjugation with human fetal osteoblasts.
    Borcard F; Kong P; Journot C; Staedler D; Sturzenegger PN; Juillerat FK; Gonzenbach UT; Juillerat-Jeanneret L; Gerber-Lemaire S
    Chimia (Aarau); 2013; 67(4):213-7. PubMed ID: 23967691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of novel biphasic calcium phosphate powders (alpha-TCP/HA) derived from carbonated amorphous calcium phosphates.
    Li Y; Kong F; Weng W
    J Biomed Mater Res B Appl Biomater; 2009 May; 89(2):508-517. PubMed ID: 18937266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase conversion of tricalcium phosphate into Ca-deficient apatite during sintering of hydroxyapatite-tricalcium phosphate biphasic ceramics.
    Kong YM; Kim HE; Kim HW
    J Biomed Mater Res B Appl Biomater; 2008 Feb; 84(2):334-9. PubMed ID: 17595029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.