These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1359 related articles for article (PubMed ID: 19714693)
1. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Sletten EM; Bertozzi CR Angew Chem Int Ed Engl; 2009; 48(38):6974-98. PubMed ID: 19714693 [TBL] [Abstract][Full Text] [Related]
2. From mechanism to mouse: a tale of two bioorthogonal reactions. Sletten EM; Bertozzi CR Acc Chem Res; 2011 Sep; 44(9):666-76. PubMed ID: 21838330 [TBL] [Abstract][Full Text] [Related]
3. Introducing bioorthogonal functionalities into proteins in living cells. Hao Z; Hong S; Chen X; Chen PR Acc Chem Res; 2011 Sep; 44(9):742-51. PubMed ID: 21634380 [TBL] [Abstract][Full Text] [Related]
4. Bioorthogonal Chemistry—Introduction and Overview [corrected]. Carell T; Vrabel M Top Curr Chem (Cham); 2016 Feb; 374(1):9. PubMed ID: 27572992 [TBL] [Abstract][Full Text] [Related]
7. Multifluorinated Aryl Azides for the Development of Improved H Kang X; Cai X; Yi L; Xi Z Chem Asian J; 2020 May; 15(9):1420-1429. PubMed ID: 32144862 [TBL] [Abstract][Full Text] [Related]
8. Bioorthogonal chemistry for site-specific labeling and surface immobilization of proteins. Chen YX; Triola G; Waldmann H Acc Chem Res; 2011 Sep; 44(9):762-73. PubMed ID: 21648407 [TBL] [Abstract][Full Text] [Related]
9. Bioorthogonal chemistry: applications in activity-based protein profiling. Willems LI; van der Linden WA; Li N; Li KY; Liu N; Hoogendoorn S; van der Marel GA; Florea BI; Overkleeft HS Acc Chem Res; 2011 Sep; 44(9):718-29. PubMed ID: 21797256 [TBL] [Abstract][Full Text] [Related]
10. Constructing New Bioorthogonal Reagents and Reactions. Row RD; Prescher JA Acc Chem Res; 2018 May; 51(5):1073-1081. PubMed ID: 29727171 [TBL] [Abstract][Full Text] [Related]
11. Bioorthogonal chemistry-based RNA labeling technologies: evolution and current state. George JT; Srivatsan SG Chem Commun (Camb); 2020 Oct; 56(82):12307-12318. PubMed ID: 33026365 [TBL] [Abstract][Full Text] [Related]
12. SNAP/CLIP-Tags and Strain-Promoted Azide-Alkyne Cycloaddition (SPAAC)/Inverse Electron Demand Diels-Alder (IEDDA) for Intracellular Orthogonal/Bioorthogonal Labeling. Macias-Contreras M; He H; Little KN; Lee JP; Campbell RP; Royzen M; Zhu L Bioconjug Chem; 2020 May; 31(5):1370-1381. PubMed ID: 32223177 [TBL] [Abstract][Full Text] [Related]
13. Development and application of bond cleavage reactions in bioorthogonal chemistry. Li J; Chen PR Nat Chem Biol; 2016 Mar; 12(3):129-37. PubMed ID: 26881764 [TBL] [Abstract][Full Text] [Related]
14. An efficient reagent for covalent introduction of alkynes into proteins. Zhang J; Ma D; Du D; Xi Z; Yi L Org Biomol Chem; 2014 Dec; 12(47):9528-31. PubMed ID: 25354584 [TBL] [Abstract][Full Text] [Related]
15. Bioconjugation with strained alkenes and alkynes. Debets MF; van Berkel SS; Dommerholt J; Dirks AT; Rutjes FP; van Delft FL Acc Chem Res; 2011 Sep; 44(9):805-15. PubMed ID: 21766804 [TBL] [Abstract][Full Text] [Related]
20. A covalent approach for site-specific RNA labeling in Mammalian cells. Li F; Dong J; Hu X; Gong W; Li J; Shen J; Tian H; Wang J Angew Chem Int Ed Engl; 2015 Apr; 54(15):4597-602. PubMed ID: 25694369 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]