These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 19714772)

  • 41. Protein-RNA interactions: structural analysis and functional classes.
    Ellis JJ; Broom M; Jones S
    Proteins; 2007 Mar; 66(4):903-11. PubMed ID: 17186525
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis and network representation of hotspots in protein interfaces using minimum cut trees.
    Tuncbag N; Salman FS; Keskin O; Gursoy A
    Proteins; 2010 Aug; 78(10):2283-94. PubMed ID: 20544964
    [TBL] [Abstract][Full Text] [Related]  

  • 43. GANNPhos: a new phosphorylation site predictor based on a genetic algorithm integrated neural network.
    Tang YR; Chen YZ; Canchaya CA; Zhang Z
    Protein Eng Des Sel; 2007 Aug; 20(8):405-12. PubMed ID: 17652129
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Predicting protein-binding RNA nucleotides using the feature-based removal of data redundancy and the interaction propensity of nucleotide triplets.
    Choi S; Han K
    Comput Biol Med; 2013 Nov; 43(11):1687-97. PubMed ID: 24209914
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A fast method to predict protein interaction sites from sequences.
    Gallet X; Charloteaux B; Thomas A; Brasseur R
    J Mol Biol; 2000 Sep; 302(4):917-26. PubMed ID: 10993732
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure-based prediction of DNA-binding sites on proteins using the empirical preference of electrostatic potential and the shape of molecular surfaces.
    Tsuchiya Y; Kinoshita K; Nakamura H
    Proteins; 2004 Jun; 55(4):885-94. PubMed ID: 15146487
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computational mapping of anchoring spots on protein surfaces.
    Ben-Shimon A; Eisenstein M
    J Mol Biol; 2010 Sep; 402(1):259-77. PubMed ID: 20643147
    [TBL] [Abstract][Full Text] [Related]  

  • 48. AANT: the Amino Acid-Nucleotide Interaction Database.
    Hoffman MM; Khrapov MA; Cox JC; Yao J; Tong L; Ellington AD
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D174-81. PubMed ID: 14681388
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exploiting three kinds of interface propensities to identify protein binding sites.
    Liu B; Wang X; Lin L; Dong Q; Wang X
    Comput Biol Chem; 2009 Aug; 33(4):303-11. PubMed ID: 19646926
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An evolutionary trace method defines binding surfaces common to protein families.
    Lichtarge O; Bourne HR; Cohen FE
    J Mol Biol; 1996 Mar; 257(2):342-58. PubMed ID: 8609628
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Arginine-rich motifs present multiple interfaces for specific binding by RNA.
    Bayer TS; Booth LN; Knudsen SM; Ellington AD
    RNA; 2005 Dec; 11(12):1848-57. PubMed ID: 16314457
    [TBL] [Abstract][Full Text] [Related]  

  • 52. N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence.
    Maurer-Stroh S; Eisenhaber B; Eisenhaber F
    J Mol Biol; 2002 Apr; 317(4):541-57. PubMed ID: 11955008
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of protein binding surfaces using surface triplet propensities.
    Mehio W; Kemp GJ; Taylor P; Walkinshaw MD
    Bioinformatics; 2010 Oct; 26(20):2549-55. PubMed ID: 20819959
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Propensity vectors of low-ASA residue pairs in the distinction of protein interactions.
    Liu Q; Li J
    Proteins; 2010 Feb; 78(3):589-602. PubMed ID: 19768686
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Side-chain rotamer transitions at protein-protein interfaces.
    Guharoy M; Janin J; Robert CH
    Proteins; 2010 Nov; 78(15):3219-25. PubMed ID: 20737439
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimization of pyDock for the new CAPRI challenges: Docking of homology-based models, domain-domain assembly and protein-RNA binding.
    Pons C; Solernou A; Perez-Cano L; Grosdidier S; Fernandez-Recio J
    Proteins; 2010 Nov; 78(15):3182-8. PubMed ID: 20602351
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure based approach for understanding organism specific recognition of protein-RNA complexes.
    Nagarajan R; Chothani SP; Ramakrishnan C; Sekijima M; Gromiha MM
    Biol Direct; 2015 Mar; 10():8. PubMed ID: 25886642
    [TBL] [Abstract][Full Text] [Related]  

  • 58. RBRDetector: improved prediction of binding residues on RNA-binding protein structures using complementary feature- and template-based strategies.
    Yang XX; Deng ZL; Liu R
    Proteins; 2014 Oct; 82(10):2455-71. PubMed ID: 24854765
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Use of amino acid composition to predict epitope residues of individual antibodies.
    Soga S; Kuroda D; Shirai H; Kobori M; Hirayama N
    Protein Eng Des Sel; 2010 Jun; 23(6):441-8. PubMed ID: 20304974
    [TBL] [Abstract][Full Text] [Related]  

  • 60. BIPA: a database for protein-nucleic acid interaction in 3D structures.
    Lee S; Blundell TL
    Bioinformatics; 2009 Jun; 25(12):1559-60. PubMed ID: 19357098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.