These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 19714811)
1. Homodimeric alkaline phosphatase located at Helicoverpa armigera midgut, a putative receptor of Cry1Ac contains alpha-GalNAc in terminal glycan structure as interactive epitope. Sarkar A; Hess D; Mondal HA; Banerjee S; Sharma HC; Das S J Proteome Res; 2009 Apr; 8(4):1838-48. PubMed ID: 19714811 [TBL] [Abstract][Full Text] [Related]
2. N-acetylgalactosamine on the putative insect receptor aminopeptidase N is recognised by a site on the domain III lectin-like fold of a Bacillus thuringiensis insecticidal toxin. Burton SL; Ellar DJ; Li J; Derbyshire DJ J Mol Biol; 1999 Apr; 287(5):1011-22. PubMed ID: 10222207 [TBL] [Abstract][Full Text] [Related]
3. Characterization of a Cry1Ac toxin-binding alkaline phosphatase in the midgut from Helicoverpa armigera (Hübner) larvae. Ning C; Wu K; Liu C; Gao Y; Jurat-Fuentes JL; Gao X J Insect Physiol; 2010 Jun; 56(6):666-72. PubMed ID: 20170658 [TBL] [Abstract][Full Text] [Related]
4. Development and mechanisms of resistance to Bacillus thuringiensis endotoxin Cry1Ac in the American bollworm, Helicoverpa armigera (Hübner). Chandrashekar K; Gujar GT Indian J Exp Biol; 2004 Feb; 42(2):164-73. PubMed ID: 15282949 [TBL] [Abstract][Full Text] [Related]
5. Reduction of Bacillus thuringiensis Cry1Ac toxicity against Helicoverpa armigera by a soluble toxin-binding cadherin fragment. Liu C; Wu K; Wu Y; Gao Y; Ning C; Oppert B J Insect Physiol; 2009 Aug; 55(8):686-93. PubMed ID: 19446559 [TBL] [Abstract][Full Text] [Related]
6. Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin. Zhang S; Cheng H; Gao Y; Wang G; Liang G; Wu K Insect Biochem Mol Biol; 2009 Jul; 39(7):421-9. PubMed ID: 19376227 [TBL] [Abstract][Full Text] [Related]
7. Identification of midgut membrane proteins from different instars of Helicoverpa armigera (Lepidoptera: Noctuidae) that bind to Cry1Ac toxin. Da Silva IHS; Goméz I; Sánchez J; Martínez de Castro DL; Valicente FH; Soberón M; Polanczyk RA; Bravo A PLoS One; 2018; 13(12):e0207789. PubMed ID: 30521540 [TBL] [Abstract][Full Text] [Related]
8. New insight to structure-function relationship of GalNAc mediated primary interaction between insecticidal Cry1Ac toxin and HaALP receptor of Helicoverpa armigera. Sengupta A; Sarkar A; Priya P; Ghosh Dastidar S; Das S PLoS One; 2013; 8(10):e78249. PubMed ID: 24205171 [TBL] [Abstract][Full Text] [Related]
9. Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant Helicoverpa armigera larvae? Ma G; Roberts H; Sarjan M; Featherstone N; Lahnstein J; Akhurst R; Schmidt O Insect Biochem Mol Biol; 2005 Jul; 35(7):729-39. PubMed ID: 15894190 [TBL] [Abstract][Full Text] [Related]
10. Structural changes of the Cry1Ac oligomeric pre-pore from bacillus thuringiensis induced by N-acetylgalactosamine facilitates toxin membrane insertion. Pardo-López L; Gómez I; Rausell C; Sanchez J; Soberón M; Bravo A Biochemistry; 2006 Aug; 45(34):10329-36. PubMed ID: 16922508 [TBL] [Abstract][Full Text] [Related]
11. A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera. Chen W; Liu C; Xiao Y; Zhang D; Zhang Y; Li X; Tabashnik BE; Wu K PLoS One; 2015; 10(4):e0126288. PubMed ID: 25885820 [TBL] [Abstract][Full Text] [Related]
12. Functional expression in insect cells of glycosylphosphatidylinositol-linked alkaline phosphatase from Aedes aegypti larval midgut: a Bacillus thuringiensis Cry4Ba toxin receptor. Dechklar M; Tiewsiri K; Angsuthanasombat C; Pootanakit K Insect Biochem Mol Biol; 2011 Mar; 41(3):159-66. PubMed ID: 21146607 [TBL] [Abstract][Full Text] [Related]
13. Role of alkaline phosphatase in insecticidal action of Cry1Ac against Helicoverpa armigera larvae. Upadhyay SK; Singh PK Biotechnol Lett; 2011 Oct; 33(10):2027-36. PubMed ID: 21660568 [TBL] [Abstract][Full Text] [Related]
14. Antisera-mediated in vivo reduction of Cry1Ac toxicity in Helicoverpa armigera. Liu C; Gao Y; Ning C; Wu K; Oppert B; Guo Y J Insect Physiol; 2010 Jul; 56(7):718-24. PubMed ID: 20035762 [TBL] [Abstract][Full Text] [Related]
15. Helicoverpa armigera cadherin fragment enhances Cry1Ac insecticidal activity by facilitating toxin-oligomer formation. Peng D; Xu X; Ye W; Yu Z; Sun M Appl Microbiol Biotechnol; 2010 Jan; 85(4):1033-40. PubMed ID: 19652967 [TBL] [Abstract][Full Text] [Related]
16. Proteomic identification of Bacillus thuringiensis subsp. israelensis toxin Cry4Ba binding proteins in midgut membranes from Aedes (Stegomyia) aegypti Linnaeus (Diptera, Culicidae) larvae. Bayyareddy K; Andacht TM; Abdullah MA; Adang MJ Insect Biochem Mol Biol; 2009 Apr; 39(4):279-86. PubMed ID: 19272330 [TBL] [Abstract][Full Text] [Related]
17. Biochemical characterization of digestive membrane-associated alkaline phosphatase from the velvet bean caterpillar Anticarsia gemmatalis. da Silva G; Costa Ramos LF; Dos Santos Seckler H; Mendonça Gomes F; Reis Cortines J; Ramos I; Dinis Anobom C; de Alcantara Machado E; Perpétua de Oliveira DM Arch Insect Biochem Physiol; 2019 Sep; 102(1):e21591. PubMed ID: 31257641 [TBL] [Abstract][Full Text] [Related]
18. Cloning and characterization of the Cry1Ac-binding alkaline phosphatase (HvALP) from Heliothis virescens. Perera OP; Willis JD; Adang MJ; Jurat-Fuentes JL Insect Biochem Mol Biol; 2009 Apr; 39(4):294-302. PubMed ID: 19552892 [TBL] [Abstract][Full Text] [Related]
19. Resistance of Helicoverpa armigera to Cry1Ac toxin from Bacillus thuringiensis is due to improper processing of the protoxin. Rajagopal R; Arora N; Sivakumar S; Rao NG; Nimbalkar SA; Bhatnagar RK Biochem J; 2009 Apr; 419(2):309-16. PubMed ID: 19146482 [TBL] [Abstract][Full Text] [Related]
20. Identification of ABCC2 as a binding protein of Cry1Ac on brush border membrane vesicles from Helicoverpa armigera by an improved pull-down assay. Zhou Z; Wang Z; Liu Y; Liang G; Shu C; Song F; Zhou X; Bravo A; Soberón M; Zhang J Microbiologyopen; 2016 Aug; 5(4):659-69. PubMed ID: 27037552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]