BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 1971509)

  • 1. Molecular sizes of amino acid transporters in the luminal membrane from the kidney cortex, estimated by the radiation-inactivation method.
    Béliveau R; Demeule M; Jetté M; Potier M
    Biochem J; 1990 May; 268(1):195-200. PubMed ID: 1971509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiation-inactivation studies on brush-border-membrane vesicles. General considerations, and application to the glucose and phosphate carriers.
    Béliveau R; Demeule M; Ibnoul-Khatib H; Bergeron M; Beauregard G; Potier M
    Biochem J; 1988 Jun; 252(3):807-13. PubMed ID: 3421923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kidney brush-border membrane transporters: differential sensitivity to diethyl pyrocarbonate.
    Beaumier B; Béliveau R
    Biochim Biophys Acta; 1991 Sep; 1068(2):142-8. PubMed ID: 1911827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular size of the Na+-H+ antiport in renal brush border membranes, as estimated by radiation inactivation.
    Béliveau R; Demeule M; Potier M
    Biochem Biophys Res Commun; 1988 Apr; 152(1):484-9. PubMed ID: 2833900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular size of a Na(+)-dependent amino acid transporter in Ehrlich ascites cell plasma membranes estimated by radiation inactivation.
    McCormick JI; Jetté M; Potier M; Béliveau R; Johnstone RM
    Biochemistry; 1991 Apr; 30(15):3704-9. PubMed ID: 2015226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Renal handling of taurine, L-alanine, L-glutamate and D-glucose in Opsanus tau: studies on isolated brush border membrane vesicles.
    Wolff NA; Kinne R; Elger B; Goldstein L
    J Comp Physiol B; 1987; 157(5):573-81. PubMed ID: 2891734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dietary protein reduction in sheep and goats: different effects on L-alanine and L-leucine transport across the brush-border membrane of jejunal enterocytes.
    Schröder B; Schöneberger M; Rodehutscord M; Pfeffer E; Breves G
    J Comp Physiol B; 2003 Aug; 173(6):511-8. PubMed ID: 12811487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus.
    Heyne RI; de Vrij W; Crielaard W; Konings WN
    J Bacteriol; 1991 Jan; 173(2):791-800. PubMed ID: 1670936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How many Na+-dependent carriers for L-alanine and L-proline in the eel intestine? Studies with brush-border membrane vesicles.
    Vilella S; Cassano G; Storelli C
    Biochim Biophys Acta; 1989 Sep; 984(2):188-92. PubMed ID: 2765548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delineation of sodium-stimulated amino acid transport pathways in rabbit kidney brush border vesicles.
    Mircheff AK; Kippen I; Hirayama B; Wright EM
    J Membr Biol; 1982; 64(1-2):113-22. PubMed ID: 7057450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for a single common Na+-dependent transport system for alanine, glutamine, leucine and phenylalanine in brush-border membrane vesicles from bovine kidney.
    Lynch AM; McGivan JD
    Biochim Biophys Acta; 1987 May; 899(2):176-84. PubMed ID: 3580363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between Na+-dependent uptake of D-glucose, phosphate and L-alanine in rat renal brush border membrane vesicles.
    Thierry J; Poujeol P; Ripoche P
    Biochim Biophys Acta; 1981 Oct; 647(2):203-10. PubMed ID: 7295725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na+-independent transport of bipolar and cationic amino acids across the luminal membrane of the small intestine.
    Munck BG; Munck LK
    Am J Physiol; 1997 Apr; 272(4 Pt 2):R1060-8. PubMed ID: 9140002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiation inactivation studies of renal brush border water and urea transport.
    Verkman AS; Dix JA; Seifter JL; Skorecki KL; Jung CY; Ausiello DA
    Am J Physiol; 1985 Dec; 249(6 Pt 2):F806-12. PubMed ID: 3934983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiation inactivation studies on the rabbit kidney sodium-dependent glucose transporter.
    Takahashi M; Malathi P; Preiser H; Jung CY
    J Biol Chem; 1985 Sep; 260(19):10551-6. PubMed ID: 4040909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The renal brush border membrane sodium/sulfate cotransporter functions in situ as a homotetramer.
    Jetté M; Pelletier J; Potier M; Béliveau R
    Int J Biochem Cell Biol; 1996 Oct; 28(10):1151-4. PubMed ID: 8930139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a dipeptide transport system in renal brush border membranes from rabbit.
    Ganapathy V; Mendicino J; Leibach FH
    Biochim Biophys Acta; 1981 Apr; 642(2):381-91. PubMed ID: 7284363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple transport pathways for neutral amino acids in rabbit jejunal brush border vesicles.
    Stevens BR; Ross HJ; Wright EM
    J Membr Biol; 1982; 66(3):213-25. PubMed ID: 6808139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiation inactivation studies of the renal brush-border membrane phlorizin-binding protein.
    Turner RJ; Kempner ES
    J Biol Chem; 1982 Sep; 257(18):10794-7. PubMed ID: 6286675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proline, leucine, and alanine transport in placental microvillous membrane vesicles prepared from late gestational rats.
    Bonkobara M; Thongsong B; Matsuki N; Inaba M; Ono K
    J Vet Med Sci; 1998 Oct; 60(10):1081-5. PubMed ID: 9819760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.