These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 19715267)

  • 41. Postoperative changes in intraocular pressure and corneal biomechanical metrics Laser in situ keratomileusis versus laser-assisted subepithelial keratectomy.
    Qazi MA; Sanderson JP; Mahmoud AM; Yoon EY; Roberts CJ; Pepose JS
    J Cataract Refract Surg; 2009 Oct; 35(10):1774-88. PubMed ID: 19781475
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Effects of central corneal thickness and corneal curvature on measurement of intraocular pressure with Goldmann applanation tonometer and non-contact tonometer].
    Zhang Y; Zhao JL; Bian AL; Liu XL; Jin YM
    Zhonghua Yan Ke Za Zhi; 2009 Aug; 45(8):713-8. PubMed ID: 20021884
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of eye rubbing and breath holding on corneal biomechanical properties and intraocular pressure.
    Liu WC; Lee SM; Graham AD; Lin MC
    Cornea; 2011 Aug; 30(8):855-60. PubMed ID: 21505326
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Theoretical basis of goldmann applanation tonometry].
    Wiegand W; Schroeder B; Hager A
    Klin Monbl Augenheilkd; 2005 Jul; 222(7):552-7. PubMed ID: 16034722
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of dynamic contour tonometry and goldmann applanation tonometry in deep lamellar and penetrating keratoplasties.
    Ceruti P; Morbio R; Marraffa M; Marchini G
    Am J Ophthalmol; 2008 Feb; 145(2):215-221. PubMed ID: 18222191
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assessment of true intraocular pressure: the gap between theory and practical data.
    Chihara E
    Surv Ophthalmol; 2008; 53(3):203-18. PubMed ID: 18501267
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reproducibility of viscoelastic property and intraocular pressure measurements obtained with the Ocular Response Analyzer.
    Kopito R; Gaujoux T; Montard R; Touzeau O; Allouch C; Borderie V; Laroche L
    Acta Ophthalmol; 2011 May; 89(3):e225-30. PubMed ID: 20738262
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Noncontact intraocular pressure reading prediction after Laser-assisted in situ Keratomileusis by the finite element method.
    Ou CJ; Sun HY
    Int J Numer Method Biomed Eng; 2012 Nov; 28(11):1156-64. PubMed ID: 23109384
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Once more about the diagnostic capacities of elastic tonometry].
    Avetisov SE; Bubnova IA; Antonov AA
    Vestn Oftalmol; 2008; 124(5):19-21. PubMed ID: 19062552
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Applanation tonometry in "normal" patients and patients after LASIK].
    Kohlhaas M; Spörl E; Böhm AG; Pollack K; Sandner D; Pillunat LE
    Klin Monbl Augenheilkd; 2005 Oct; 222(10):823-6. PubMed ID: 16240277
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Corneal thickness- and age-related biomechanical properties of the cornea measured with the ocular response analyzer.
    Kotecha A; Elsheikh A; Roberts CR; Zhu H; Garway-Heath DF
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5337-47. PubMed ID: 17122122
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ocular biomechanical metrics by CorVis ST in healthy Brazilian patients.
    Valbon BF; Ambrósio R; Fontes BM; Luz A; Roberts CJ; Alves MR
    J Refract Surg; 2014 Jul; 30(7):468-73. PubMed ID: 24877553
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biomechanical and refractive behaviors of keratoconic cornea based on three-dimensional anisotropic hyperelastic models.
    Han Z; Sui X; Zhou D; Zhou C; Ren Q
    J Refract Surg; 2013 Apr; 29(4):282-90. PubMed ID: 23557227
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Goldmann applanation tonometry - not as good as gold.
    Sródka W
    Acta Bioeng Biomech; 2010; 12(2):39-47. PubMed ID: 20882940
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Air-puff associated quantification of non-linear biomechanical properties of the human cornea in vivo.
    Sinha Roy A; Kurian M; Matalia H; Shetty R
    J Mech Behav Biomed Mater; 2015 Aug; 48():173-182. PubMed ID: 25955559
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dynamic Optical Coherence Elastography of the Anterior Eye: Understanding the Biomechanics of the Limbus.
    Zvietcovich F; Nair A; Singh M; Aglyamov SR; Twa MD; Larin KV
    Invest Ophthalmol Vis Sci; 2020 Nov; 61(13):7. PubMed ID: 33141893
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Importance of accurately assessing biomechanics of the cornea.
    Roberts CJ
    Curr Opin Ophthalmol; 2016 Jul; 27(4):285-91. PubMed ID: 27152485
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamic corneal deformation response and integrated corneal tomography.
    Salomão MQ; Hofling-Lima AL; Faria-Correia F; Lopes BT; Rodrigues-Barros S; Roberts CJ; Ambrósio R
    Indian J Ophthalmol; 2018 Mar; 66(3):373-382. PubMed ID: 29480246
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Applanation optical coherence elastography: noncontact measurement of intraocular pressure, corneal biomechanical properties, and corneal geometry with a single instrument.
    Singh M; Han Z; Nair A; Schill A; Twa MD; Larin KV
    J Biomed Opt; 2017 Feb; 22(2):20502. PubMed ID: 28241272
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Finite element modeling of corneal biomechanical behavior.
    Elsheikh A
    J Refract Surg; 2010 Apr; 26(4):289-300. PubMed ID: 20415325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.