BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 19715320)

  • 1. Grassystatins A-C from marine cyanobacteria, potent cathepsin E inhibitors that reduce antigen presentation.
    Kwan JC; Eksioglu EA; Liu C; Paul VJ; Luesch H
    J Med Chem; 2009 Sep; 52(18):5732-47. PubMed ID: 19715320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tasiamide F, a potent inhibitor of cathepsins D and E from a marine cyanobacterium.
    Al-Awadhi FH; Ratnayake R; Paul VJ; Luesch H
    Bioorg Med Chem; 2016 Aug; 24(15):3276-82. PubMed ID: 27211244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grassystatins D-F, Potent Aspartic Protease Inhibitors from Marine Cyanobacteria as Potential Antimetastatic Agents Targeting Invasive Breast Cancer.
    Al-Awadhi FH; Law BK; Paul VJ; Luesch H
    J Nat Prod; 2017 Nov; 80(11):2969-2986. PubMed ID: 29087712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grassystatin-derived peptides selectively inhibit cathepsin E and have low affinity to cathepsin D.
    Stotz S; Bleher D; Kalbacher H; Maurer A
    Biochem Biophys Res Commun; 2020 Jun; 527(1):238-241. PubMed ID: 32446374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Total synthesis of grassystatin A, a probe for cathepsin E function.
    Yang S; Zhang W; Ding N; Lo J; Liu Y; Clare-Salzler MJ; Luesch H; Li Y
    Bioorg Med Chem; 2012 Aug; 20(15):4774-80. PubMed ID: 22748705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective detection of Cathepsin E proteolytic activity.
    Abd-Elgaliel WR; Tung CH
    Biochim Biophys Acta; 2010 Sep; 1800(9):1002-8. PubMed ID: 20600629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lower homologues of ahpatinin, aspartic protease inhibitors, from a marine Streptomyces sp.
    Sun Y; Takada K; Nogi Y; Okada S; Matsunaga S
    J Nat Prod; 2014 Jul; 77(7):1749-52. PubMed ID: 24960234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The marine cyanobacterial metabolite gallinamide A is a potent and selective inhibitor of human cathepsin L.
    Miller B; Friedman AJ; Choi H; Hogan J; McCammon JA; Hook V; Gerwick WH
    J Nat Prod; 2014 Jan; 77(1):92-9. PubMed ID: 24364476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of cathepsin D by tripeptides containing statine analogs.
    Bessodes M; Antonakis K; Herscovici J; Garcia M; Rochefort H; Capony F; Lelièvre Y; Scherman D
    Biochem Pharmacol; 1999 Jul; 58(2):329-33. PubMed ID: 10423175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Miraziridine A: natures blueprint towards protease class-spanning inhibitors.
    Schaschke N
    Bioorg Med Chem Lett; 2004 Feb; 14(4):855-7. PubMed ID: 15012981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyanobacterial peptides as a prototype for the design of potent β-secretase inhibitors and the development of selective chemical probes for other aspartic proteases.
    Liu Y; Zhang W; Li L; Salvador LA; Chen T; Chen W; Felsenstein KM; Ladd TB; Price AR; Golde TE; He J; Xu Y; Li Y; Luesch H
    J Med Chem; 2012 Dec; 55(23):10749-65. PubMed ID: 23181502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural biflavones as novel inhibitors of cathepsin B and K.
    Zeng GZ; Pan XL; Tan NH; Xiong J; Zhang YM
    Eur J Med Chem; 2006 Nov; 41(11):1247-52. PubMed ID: 16828525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symplocin A, a linear peptide from the Bahamian cyanobacterium Symploca sp. Configurational analysis of N,N-dimethylamino acids by chiral-phase HPLC of naphthacyl esters.
    Molinski TF; Reynolds KA; Morinaka BI
    J Nat Prod; 2012 Mar; 75(3):425-31. PubMed ID: 22360587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lyngbyastatins 5-7, potent elastase inhibitors from Floridian marine cyanobacteria, Lyngbya spp.
    Taori K; Matthew S; Rocca JR; Paul VJ; Luesch H
    J Nat Prod; 2007 Oct; 70(10):1593-600. PubMed ID: 17910513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recombinant human cathepsin E.
    Hill J; Montgomery D; Kay J
    Adv Exp Med Biol; 1995; 362():315-8. PubMed ID: 8540334
    [No Abstract]   [Full Text] [Related]  

  • 16. Cyanobacterial peptides as a prototype for the design of cathepsin D inhibitors.
    Xu H; Bao K; Tang S; Ai J; Hu H; Zhang W
    J Pept Sci; 2017 Sep; 23(9):701-706. PubMed ID: 28585417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lyngbyastatin 4, a dolastatin 13 analogue with elastase and chymotrypsin inhibitory activity from the marine cyanobacterium Lyngbya confervoides.
    Matthew S; Ross C; Rocca JR; Paul VJ; Luesch H
    J Nat Prod; 2007 Jan; 70(1):124-7. PubMed ID: 17253864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Symplostatin 2: a dolastatin 13 analogue from the marine cyanobacterium Symploca hydnoides.
    Harrigan GG; Luesch H; Yoshida WY; Moore RE; Nagle DG; Paul VJ
    J Nat Prod; 1999 Apr; 62(4):655-8. PubMed ID: 10217737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mannose-pepstatin conjugates as targeted inhibitors of antigen processing.
    Free P; Hurley CA; Kageyama T; Chain BM; Tabor AB
    Org Biomol Chem; 2006 May; 4(9):1817-30. PubMed ID: 16633575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, synthesis, and bioactivities of tasiamide B derivatives as cathepsin D inhibitors.
    Li Z; Bao K; Xu H; Wu P; Li W; Liu J; Zhang W
    J Pept Sci; 2019 Apr; 25(4):e3154. PubMed ID: 30734395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.