These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 19715333)

  • 41. Comparison of Caco-2, IEC-18 and HCEC cell lines as a model for intestinal absorption of genistein, daidzein and their glycosides.
    Steensma A; Noteborn HP; Kuiper HA
    Environ Toxicol Pharmacol; 2004 Apr; 16(3):131-9. PubMed ID: 21782699
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Complete genomic sequence of the equol-producing bacterium Eggerthella sp. strain YY7918, isolated from adult human intestine.
    Yokoyama S; Oshima K; Nomura I; Hattori M; Suzuki T
    J Bacteriol; 2011 Oct; 193(19):5570-1. PubMed ID: 21914883
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulation of Fe absorption by cultured intestinal epithelia (Caco-2) cell monolayers with varied Fe status.
    Tapia V; Arredondo M; Núñez MT
    Am J Physiol; 1996 Sep; 271(3 Pt 1):G443-7. PubMed ID: 8843768
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Progress in research of equol: a metabolite of the isoflavone daidzein].
    Wu JQ; Guo CJ; Gu JF
    Sheng Li Ke Xue Jin Zhan; 2006 Oct; 37(4):359-61. PubMed ID: 17262973
    [No Abstract]   [Full Text] [Related]  

  • 45. Using Caco-2 Cells to Study Lipid Transport by the Intestine.
    Nauli AM; Whittimore JD
    J Vis Exp; 2015 Aug; (102):e53086. PubMed ID: 26325673
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antioxidant capacity of 12 major soybean isoflavones and their bioavailability under simulated digestion and in human intestinal Caco-2 cells.
    Kim MS; Jung YS; Jang D; Cho CH; Lee SH; Han NS; Kim DO
    Food Chem; 2022 Apr; 374():131493. PubMed ID: 34802809
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biotransformation of daidzein to equol by crude enzyme from Asaccharobacter celatus AHU1763 required an anaerobic environment.
    Thawornkuno C; Tanaka M; Sone T; Asano K
    Biosci Biotechnol Biochem; 2009 Jun; 73(6):1435-8. PubMed ID: 19502755
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bioavailability of genistein, daidzein, and their glycosides in intestinal epithelial Caco-2 cells.
    Steensma A; Noteborn HP; Jagt RC; Polman TH; Mengelers MJ; Kuiper HA
    Environ Toxicol Pharmacol; 1999 Jul; 7(3):209-12. PubMed ID: 21781927
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Conversion of (3S,4R)-tetrahydrodaidzein to (3S)-equol by THD reductase: proposed mechanism involving a radical intermediate.
    Kim M; Marsh EN; Kim SU; Han J
    Biochemistry; 2010 Jul; 49(26):5582-7. PubMed ID: 20515029
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Charge and hydrophobicity of casein peptides influence transepithelial transport and bioavailability.
    Wang B; Li B
    Food Chem; 2018 Apr; 245():646-652. PubMed ID: 29287421
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The constitution of equol.
    Marrian GF; Beall D
    Biochem J; 1935 Jul; 29(7):1586-9. PubMed ID: 16745825
    [No Abstract]   [Full Text] [Related]  

  • 52. Advances in the Metabolic Mechanism and Functional Characteristics of Equol.
    Gong Y; Lv J; Pang X; Zhang S; Zhang G; Liu L; Wang Y; Li C
    Foods; 2023 Jun; 12(12):. PubMed ID: 37372545
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of Chrysin Loaded Oil-in-Water Nanoemulsion for Improving Bioaccessibility.
    Ting P; Srinuanchai W; Suttisansanee U; Tuntipopipat S; Charoenkiatkul S; Praengam K; Chantong B; Temviriyanukul P; Nuchuchua O
    Foods; 2021 Aug; 10(8):. PubMed ID: 34441689
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The role of sodium-dependent glucose transporter 1 and glucose transporter 2 in the absorption of cyanidin-3-o-β-glucoside in Caco-2 cells.
    Zou TB; Feng D; Song G; Li HW; Tang HW; Ling WH
    Nutrients; 2014 Oct; 6(10):4165-77. PubMed ID: 25314643
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pharmacokinetics of equol, a soy isoflavone metabolite, changes with the form of equol (dietary versus intestinal production) in ovariectomized rats.
    Legette LL; Prasain J; King J; Arabshahi A; Barnes S; Weaver CM
    J Agric Food Chem; 2014 Feb; 62(6):1294-300. PubMed ID: 24446705
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Isoflavone retention during processing, bioaccessibility, and transport by Caco-2 cells: effects of source and amount of fat in a soy soft pretzel.
    Simmons AL; Chitchumroonchokchai C; Vodovotz Y; Failla ML
    J Agric Food Chem; 2012 Dec; 60(49):12196-203. PubMed ID: 23167916
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transport and metabolism of equol by Caco-2 human intestinal cells.
    Walsh KR; Failla ML
    J Agric Food Chem; 2009 Sep; 57(18):8297-302. PubMed ID: 19715333
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metabolism of dietary soy isoflavones to equol by human intestinal microflora--implications for health.
    Yuan JP; Wang JH; Liu X
    Mol Nutr Food Res; 2007 Jul; 51(7):765-81. PubMed ID: 17579894
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of dietary daidzein and its metabolite, equol, at physiological concentrations on the growth of estrogen-dependent human breast cancer (MCF-7) tumors implanted in ovariectomized athymic mice.
    Ju YH; Fultz J; Allred KF; Doerge DR; Helferich WG
    Carcinogenesis; 2006 Apr; 27(4):856-63. PubMed ID: 16399773
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transepithelial transport of oral cephalosporins by monolayers of intestinal epithelial cell line Caco-2: specific transport systems in apical and basolateral membranes.
    Inui K; Yamamoto M; Saito H
    J Pharmacol Exp Ther; 1992 Apr; 261(1):195-201. PubMed ID: 1560365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.