These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 1971584)

  • 1. Enzymatic reduction of an epoxysuccinic acid derivative by rat cecal microflora.
    Fukushima K; Arai M; Suwa T; Satoh T
    Drug Metab Dispos; 1990; 18(2):264-6. PubMed ID: 1971584
    [No Abstract]   [Full Text] [Related]  

  • 2. The microbial metabolism of condensed (+)-catechins by rat-caecal microflora.
    Groenewoud G; Hundt HK
    Xenobiotica; 1986 Feb; 16(2):99-107. PubMed ID: 3962338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quinic acid aromatization in the rat. Urinary hippuric acid and catechol excretion following the singular or repeated administration of quinic acid.
    Indahl SR; Scheline RR
    Xenobiotica; 1973 Aug; 3(8):549-56. PubMed ID: 4764650
    [No Abstract]   [Full Text] [Related]  

  • 4. Comparison of the metabolism of nitrobenzene by hepatic microsomes and cecal microflora from Fischer-344 rats in vitro and the relative importance of each in vivo.
    Levin AA; Dent JG
    Drug Metab Dispos; 1982; 10(5):450-4. PubMed ID: 6128191
    [No Abstract]   [Full Text] [Related]  

  • 5. Formation of dichloroacetic acid by rat and mouse gut microflora, an in vitro study.
    Moghaddam AP; Abbas R; Fisher JW; Stavrou S; Lipscomb JC
    Biochem Biophys Res Commun; 1996 Nov; 228(2):639-45. PubMed ID: 8920962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacokinetics of nisoldipine. III. Biotransformation of nisoldipine in rat, dog, monkey, and man.
    Scherling D; Karl W; Ahr G; Ahr HJ; Wehinger E
    Arzneimittelforschung; 1988 Aug; 38(8):1105-10. PubMed ID: 2973788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reductive dechlorination of chloramphenicol by rat liver microsomes.
    Morris PL; Burke TR; Phol LR
    Drug Metab Dispos; 1983; 11(2):126-30. PubMed ID: 6133716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic fate of loxistatin in rat.
    Fukushima K; Arai M; Tamai M; Yokoo C; Murata M; Suwa T; Satoh T
    Xenobiotica; 1990 Oct; 20(10):1043-51. PubMed ID: 2082594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dimethylnitrosamine formation from sodium nitrite and dimethylamine by bacterial flora of rat intestine.
    Klubes P; Jondorf WR
    Res Commun Chem Pathol Pharmacol; 1971 Jan; 2(1):24-34. PubMed ID: 5149878
    [No Abstract]   [Full Text] [Related]  

  • 10. The enzymatic and mass spectrometric identification of 2-oxophytanic acid, a product of the peroxisomal oxidation of l-2-hydroxyphytanic acid.
    Vamecq J; Draye JP
    Biomed Environ Mass Spectrom; 1988 Mar; 15(6):345-51. PubMed ID: 3288289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of 3-(2-dimethylaminoethyl)benzo(b)thiophene in vitro and in vivo in the rat.
    Harrison SD; Bosin TR; Maickel RP
    Drug Metab Dispos; 1974; 2(3):228-36. PubMed ID: 4152961
    [No Abstract]   [Full Text] [Related]  

  • 12. N-glucoside formation as a detoxification mechanism in mammals.
    Duggan DE; Baldwin JJ; Arison BH; Rhodes RE
    J Pharmacol Exp Ther; 1974 Sep; 190(3):563-9. PubMed ID: 4414772
    [No Abstract]   [Full Text] [Related]  

  • 13. Microsomal oxidation of praziquantel.
    Högemann A; Kiec-Kononowicz K; Westhoff F; Blaschke G
    Arzneimittelforschung; 1990 Oct; 40(10):1159-62. PubMed ID: 2291756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The identification, properties and analysis of N-hydroxyamphetamine--a metabolite of amphetamine.
    Beckett AH; al-Sarraj S
    J Pharm Pharmacol; 1973 Apr; 25(4):329-34. PubMed ID: 4146687
    [No Abstract]   [Full Text] [Related]  

  • 15. Mass spectrometric identification of 10,11-dihydro-10,11-dihydroxyprotriptyline in rat urine after administration of protriptyline.
    Belvedere G; Frigerio A; Pantarotto C; Rovei V; Zanol M; Parravicini F; Pifferi G
    Farmaco Sci; 1975 Nov; 30(11):904-16. PubMed ID: 1193231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro biotransformation of an arsenosugar by mouse anaerobic cecal microflora and cecal tissue as examined using IC-ICP-MS and LC-ESI-MS/MS.
    Conklin SD; Ackerman AH; Fricke MW; Creed PA; Creed JT; Kohan MC; Herbin-Davis K; Thomas DJ
    Analyst; 2006 May; 131(5):648-55. PubMed ID: 16633578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of benzophenone and alpha, alpha-diarylacetophenone metabolites of the antiestrogen nitromiphene (CI628) in the presence of rat cecal contents.
    Ruenitz PC; Bagley JR
    Life Sci; 1983 Sep; 33(11):1051-6. PubMed ID: 6412010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of pronethalol in the rat, the guinea pig and the mouse.
    Stillwell WG; Horning MG
    Res Commun Chem Pathol Pharmacol; 1974 Dec; 9(4):601-19. PubMed ID: 4156416
    [No Abstract]   [Full Text] [Related]  

  • 19. New metabolites of riboflavin appeared in rat urine.
    Ohkawa H; Ohishi N; Yagi K
    Biochem Int; 1983 Feb; 6(2):239-47. PubMed ID: 6679322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The metabolism of 1-n-butyl-5,5-diethylbarbituric acid (N-n-butyl barbital) in the rat.
    Vore M; Sweetman BJ; Bush JT
    J Pharmacol Exp Ther; 1974 Aug; 190(2):384-94. PubMed ID: 4449048
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.