These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 19715983)
1. Blockade of T-lymphocyte KCa3.1 and Kv1.3 channels as novel immunosuppression strategy to prevent kidney allograft rejection. Grgic I; Wulff H; Eichler I; Flothmann C; Köhler R; Hoyer J Transplant Proc; 2009; 41(6):2601-6. PubMed ID: 19715983 [TBL] [Abstract][Full Text] [Related]
2. Selective blockade of T lymphocyte K(+) channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Beeton C; Wulff H; Barbaria J; Clot-Faybesse O; Pennington M; Bernard D; Cahalan MD; Chandy KG; Béraud E Proc Natl Acad Sci U S A; 2001 Nov; 98(24):13942-7. PubMed ID: 11717451 [TBL] [Abstract][Full Text] [Related]
3. The Ca²⁺-activated K⁺ channel KCa3.1 as a potential new target for the prevention of allograft vasculopathy. Chen YJ; Lam J; Gregory CR; Schrepfer S; Wulff H PLoS One; 2013; 8(11):e81006. PubMed ID: 24312257 [TBL] [Abstract][Full Text] [Related]
4. Blockage of K(Ca)3.1 and Kv1.3 channels of the B lymphocyte decreases the inflammatory monocyte chemotaxis. Zhang S; Wang X; Ju C; Zhu L; Du Y; Gao C Int Immunopharmacol; 2016 Feb; 31():266-71. PubMed ID: 26795234 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of a clinically relevant protocol to induce tolerance of cardiac allografts. Perioperative donor spleen cells plus cyclosporine suppress IL-2 and interferon-gamma production. Salom RN; Maguire JA; Hancock WW Transplantation; 1993 Dec; 56(6):1309-14. PubMed ID: 8278994 [TBL] [Abstract][Full Text] [Related]
6. Targeting effector memory T cells with a selective peptide inhibitor of Kv1.3 channels for therapy of autoimmune diseases. Beeton C; Pennington MW; Wulff H; Singh S; Nugent D; Crossley G; Khaytin I; Calabresi PA; Chen CY; Gutman GA; Chandy KG Mol Pharmacol; 2005 Apr; 67(4):1369-81. PubMed ID: 15665253 [TBL] [Abstract][Full Text] [Related]
7. Blockade of T-cell costimulation prevents development of experimental chronic renal allograft rejection. Azuma H; Chandraker A; Nadeau K; Hancock WW; Carpenter CB; Tilney NL; Sayegh MH Proc Natl Acad Sci U S A; 1996 Oct; 93(22):12439-44. PubMed ID: 8901600 [TBL] [Abstract][Full Text] [Related]
9. A novel fluorescent toxin to detect and investigate Kv1.3 channel up-regulation in chronically activated T lymphocytes. Beeton C; Wulff H; Singh S; Botsko S; Crossley G; Gutman GA; Cahalan MD; Pennington M; Chandy KG J Biol Chem; 2003 Mar; 278(11):9928-37. PubMed ID: 12511563 [TBL] [Abstract][Full Text] [Related]
10. Combination therapy of mycophenolate mofetil and rapamycin in prevention of chronic renal allograft rejection in the rat. Jolicoeur EM; Qi S; Xu D; Dumont L; Daloze P; Chen H Transplantation; 2003 Jan; 75(1):54-9. PubMed ID: 12544871 [TBL] [Abstract][Full Text] [Related]
11. Immunomodulatory functions of low-molecular weight hyaluronate in an acute rat renal allograft rejection model. Knoflach A; Azuma H; Magee C; Denton M; Murphy B; Iyengar A; Buelow R; Sayegh MH J Am Soc Nephrol; 1999 May; 10(5):1059-66. PubMed ID: 10232693 [TBL] [Abstract][Full Text] [Related]
12. Calcineurin Inhibitor Minimization With Ixazomib, an Investigational Proteasome Inhibitor, for the Prevention of Antibody Mediated Rejection in a Preclinical Model. Reese SR; Wilson NA; Huang G; Redfield RR; Zhong W; Djamali A Transplantation; 2015 Sep; 99(9):1785-95. PubMed ID: 25919767 [TBL] [Abstract][Full Text] [Related]
13. [Effect of Kv1.3 and KCa3.1 potassium ion channels on the proliferation and migration of monocytes/macrophages]. Zhang SX; Wang XP; Gao CY; Ju CH; Zhu LJ; DU YM Sheng Li Xue Bao; 2015 Oct; 67(5):505-12. PubMed ID: 26490068 [TBL] [Abstract][Full Text] [Related]
14. Prevention of chronic rejection by pravastatin in a rat kidney transplant model. Ji P; Si MS; Podnos Y; Chow H; Steward E; Imagawa DK Transplantation; 2002 Sep; 74(6):821-7. PubMed ID: 12364863 [TBL] [Abstract][Full Text] [Related]
15. Macrophages contribute to cellular but not humoral mechanisms of acute rejection in rat renal allografts. Ma FY; Woodman N; Mulley WR; Kanellis J; Nikolic-Paterson DJ Transplantation; 2013 Dec; 96(11):949-57. PubMed ID: 24056626 [TBL] [Abstract][Full Text] [Related]
16. Potassium channel blockade by the sea anemone toxin ShK for the treatment of multiple sclerosis and other autoimmune diseases. Norton RS; Pennington MW; Wulff H Curr Med Chem; 2004 Dec; 11(23):3041-52. PubMed ID: 15578998 [TBL] [Abstract][Full Text] [Related]
17. Toward novel antirejection strategies: in vivo immunosuppressive properties of CTLA4Ig. Perico N; Imberti O; Bontempelli M; Remuzzi G Kidney Int; 1995 Jan; 47(1):241-6. PubMed ID: 7731152 [TBL] [Abstract][Full Text] [Related]
18. Renal allograft rejection, lymphocyte infiltration, and de novo donor-specific antibodies in a novel model of non-adherence to immunosuppressive therapy. Kühne L; Jung B; Poth H; Schuster A; Wurm S; Ruemmele P; Banas B; Bergler T BMC Immunol; 2017 Dec; 18(1):52. PubMed ID: 29258420 [TBL] [Abstract][Full Text] [Related]
19. The effect of a new immunosuppressive drug, brequinar sodium, on heart, liver, and kidney allograft rejection in the rat. Cramer DV; Chapman FA; Jaffee BD; Jones EA; Knoop M; Hreha-Eiras G; Makowka L Transplantation; 1992 Feb; 53(2):303-8. PubMed ID: 1531394 [TBL] [Abstract][Full Text] [Related]
20. Tacrolimus and cyclosporine differ in their capacity to overcome ongoing allograft rejection as a result of their differential abilities to inhibit interleukin-10 production. Jiang H; Wynn C; Pan F; Ebbs A; Erickson LM; Kobayashi M Transplantation; 2002 Jun; 73(11):1808-17. PubMed ID: 12085006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]