BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 19716289)

  • 41. Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock.
    Benincasa M; Abalos A; Oliveira I; Manresa A
    Antonie Van Leeuwenhoek; 2004 Jan; 85(1):1-8. PubMed ID: 15028876
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of biosurfactant on the diesel oil remediation in soil-water system.
    Li YY; Zheng XL; Li B
    J Environ Sci (China); 2006; 18(3):587-90. PubMed ID: 17294662
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recovery of surfactant SDS and Cd2+ from permeate in MEUF using a continuous foam fractionator.
    Qu YH; Zeng GM; Huang JH; Xu K; Fang YY; Li X; Liu HL
    J Hazard Mater; 2008 Jun; 155(1-2):32-8. PubMed ID: 18160217
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microbial Surfactants: Alternative to Vegetable Oil Surfactants.
    Gudiña EJ; Rodrigues LR
    Methods Mol Biol; 2019; 1995():383-393. PubMed ID: 31148140
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biosurfactant production by Pseudomonas sp. and its role in aqueous phase partitioning and biodegradation of chlorpyrifos.
    Singh PB; Sharma S; Saini HS; Chadha BS
    Lett Appl Microbiol; 2009 Sep; 49(3):378-83. PubMed ID: 19627480
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pseudomonas sp. BUP6, a novel isolate from Malabari goat produces an efficient rhamnolipid type biosurfactant.
    Priji P; Sajith S; Unni KN; Anderson RC; Benjamin S
    J Basic Microbiol; 2017 Jan; 57(1):21-33. PubMed ID: 27400277
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adsorption of monorhamnolipid and dirhamnolipid on two Pseudomonas aeruginosa strains and the effect on cell surface hydrophobicity.
    Zhong H; Zeng GM; Liu JX; Xu XM; Yuan XZ; Fu HY; Huang GH; Liu ZF; Ding Y
    Appl Microbiol Biotechnol; 2008 Jun; 79(4):671-7. PubMed ID: 18443784
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Production of rhamnolipid biosurfactant by fed-batch culture of Pseudomonas aeruginosa using glucose as a sole carbon source.
    Lee Y; Lee SY; Yang JW
    Biosci Biotechnol Biochem; 1999 May; 63(5):946-7. PubMed ID: 10380638
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microbial surfactant-enhanced mineral oil recovery under laboratory conditions.
    Bordoloi NK; Konwar BK
    Colloids Surf B Biointerfaces; 2008 May; 63(1):73-82. PubMed ID: 18164187
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rhamnolipid biosurfactants decrease the toxicity of chlorinated phenols to Pseudomonas putida DOT-T1E.
    Chrzanowski L; Wick LY; Meulenkamp R; Kaestner M; Heipieper HJ
    Lett Appl Microbiol; 2009 Jun; 48(6):756-62. PubMed ID: 19344356
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural characterization of rhamnolipid produced by Pseudomonas aeruginosa strain FIN2 isolated from oil reservoir water.
    Liu JF; Wu G; Yang SZ; Mu BZ
    World J Microbiol Biotechnol; 2014 May; 30(5):1473-84. PubMed ID: 24297330
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Production and characterisation of a biosurfactant isolated from Pseudomonas aeruginosa UW-1.
    Sim L; Ward OP; Li ZY
    J Ind Microbiol Biotechnol; 1997 Oct; 19(4):232-8. PubMed ID: 9439000
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa.
    Reiling HE; Thanei-Wyss U; Guerra-Santos LH; Hirt R; Käppeli O; Fiechter A
    Appl Environ Microbiol; 1986 May; 51(5):985-9. PubMed ID: 3089151
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Production of rhamnolipid surfactant and its application in bioscouring of cotton fabric.
    Raza ZA; Rehman A; Hussain MT; Masood R; Ul Haq A; Saddique MT; Javid A; Ahmad N
    Carbohydr Res; 2014 Jun; 391():97-105. PubMed ID: 24792318
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Co-degradation with glucose of four surfactants, CTAB, Triton X-100, SDS and Rhamnolipid, in liquid culture media and compost matrix.
    Zeng G; Fu H; Zhong H; Yuan X; Fu M; Wang W; Huang G
    Biodegradation; 2007 Jun; 18(3):303-10. PubMed ID: 17106758
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biosurfactant production by Pseudomonas aeruginosa grown in residual soybean oil.
    de Lima CJ; Ribeiro EJ; Sérvulo EF; Resende MM; Cardoso VL
    Appl Biochem Biotechnol; 2009 Jan; 152(1):156-68. PubMed ID: 18427741
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rhamnolipids as affinity foaming agent for selective collection of β-glucosidase from cellulase enzyme mixture.
    Zhang Q; Ju LK
    Enzyme Microb Technol; 2011 Feb; 48(2):175-80. PubMed ID: 22112828
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cadmium effects on transcriptional expression of rhlB/rhlC genes and congener distribution of monorhamnolipid and dirhamnolipid in Pseudomonas aeruginosa IGB83.
    Neilson JW; Zhang L; Veres-Schalnat TA; Chandler KB; Neilson CH; Crispin JD; Pemberton JE; Maier RM
    Appl Microbiol Biotechnol; 2010 Oct; 88(4):953-63. PubMed ID: 20706835
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chemical structures and biological activities of rhamnolipids produced by Pseudomonas aeruginosa B189 isolated from milk factory waste.
    Thanomsub B; Pumeechockchai W; Limtrakul A; Arunrattiyakorn P; Petchleelaha W; Nitoda T; Kanzaki H
    Bioresour Technol; 2006 Dec; 97(18):2457-61. PubMed ID: 16697639
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An inexpensive strategy for facilitated recovery of metals and fermentation products by foam fractionation process.
    Rangarajan V; Sen R
    Colloids Surf B Biointerfaces; 2013 Apr; 104():99-106. PubMed ID: 23298593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.