These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
480 related articles for article (PubMed ID: 19716583)
1. Potential for microbially mediated redox transformations and mobilization of arsenic in uncontaminated soils. Yamamura S; Watanabe M; Yamamoto N; Sei K; Ike M Chemosphere; 2009 Sep; 77(2):169-74. PubMed ID: 19716583 [TBL] [Abstract][Full Text] [Related]
2. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713 [TBL] [Abstract][Full Text] [Related]
3. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China. Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934 [TBL] [Abstract][Full Text] [Related]
4. Mineralogical and geochemical controls of arsenic speciation and mobility under different redox conditions in soil, sediment and water at the Mokrsko-West gold deposit, Czech Republic. Drahota P; Rohovec J; Filippi M; Mihaljevic M; Rychlovský P; Cervený V; Pertold Z Sci Total Environ; 2009 May; 407(10):3372-84. PubMed ID: 19217143 [TBL] [Abstract][Full Text] [Related]
5. Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil. Weber FA; Hofacker AF; Voegelin A; Kretzschmar R Environ Sci Technol; 2010 Jan; 44(1):116-22. PubMed ID: 20039741 [TBL] [Abstract][Full Text] [Related]
6. Mobilisation of arsenic from a mining soil in batch slurry experiments under bio-oxidative conditions. Bayard R; Chatain V; Gachet C; Troadec A; Gourdon R Water Res; 2006 Mar; 40(6):1240-1248. PubMed ID: 16529789 [TBL] [Abstract][Full Text] [Related]
7. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction? Grybos M; Davranche M; Gruau G; Petitjean P J Colloid Interface Sci; 2007 Oct; 314(2):490-501. PubMed ID: 17692327 [TBL] [Abstract][Full Text] [Related]
8. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content. Dobran S; Zagury GJ Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167 [TBL] [Abstract][Full Text] [Related]
9. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland. Krysiak A; Karczewska A Sci Total Environ; 2007 Jul; 379(2-3):190-200. PubMed ID: 17187844 [TBL] [Abstract][Full Text] [Related]
10. Anaerobic redox cycling of iron by freshwater sediment microorganisms. Weber KA; Urrutia MM; Churchill PF; Kukkadapu RK; Roden EE Environ Microbiol; 2006 Jan; 8(1):100-13. PubMed ID: 16343326 [TBL] [Abstract][Full Text] [Related]
11. Microbially mediated abiotic transformation of the antimicrobial agent sulfamethoxazole under iron-reducing soil conditions. Mohatt JL; Hu L; Finneran KT; Strathmann TJ Environ Sci Technol; 2011 Jun; 45(11):4793-801. PubMed ID: 21542626 [TBL] [Abstract][Full Text] [Related]
12. Iron and arsenic release from aquifer solids in response to biostimulation. McLean JE; Dupont RR; Sorensen DL J Environ Qual; 2006; 35(4):1193-203. PubMed ID: 16825439 [TBL] [Abstract][Full Text] [Related]
13. The influence of water-soluble As(III) and As(V) on dehydrogenase activity in soils affected by mine tailings. Fernández P; Sommer I; Cram S; Rosas I; Gutiérrez M Sci Total Environ; 2005 Sep; 348(1-3):231-43. PubMed ID: 16162327 [TBL] [Abstract][Full Text] [Related]
14. Arsenic mobilization in a seawater inundated acid sulfate soil. Johnston SG; Keene AF; Burton ED; Bush RT; Sullivan LA; McElnea A; Ahern CR; Smith CD; Powell B; Hocking RK Environ Sci Technol; 2010 Mar; 44(6):1968-73. PubMed ID: 20155899 [TBL] [Abstract][Full Text] [Related]
15. The role of indigenous microorganisms in the biodegradation of naturally occurring petroleum, the reduction of iron, and the mobilization of arsenite from west bengal aquifer sediments. Rowland HA; Boothman C; Pancost R; Gault AG; Polya DA; Lloyd JR J Environ Qual; 2009; 38(4):1598-607. PubMed ID: 19549936 [TBL] [Abstract][Full Text] [Related]
16. Biostimulation of iron reduction and subsequent oxidation of sediment containing Fe-silicates and Fe-oxides: effect of redox cycling on Fe(III) bioreduction. Komlos J; Kukkadapu RK; Zachara JM; Jaffé PR Water Res; 2007 Jul; 41(13):2996-3004. PubMed ID: 17467035 [TBL] [Abstract][Full Text] [Related]
17. Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments. Bauer M; Blodau C Sci Total Environ; 2006 Feb; 354(2-3):179-90. PubMed ID: 16398994 [TBL] [Abstract][Full Text] [Related]
18. Impact of water saturation level on arsenic and metal mobility in the Fe-amended soil. Kumpiene J; Ragnvaldsson D; Lövgren L; Tesfalidet S; Gustavsson B; Lättström A; Leffler P; Maurice C Chemosphere; 2009 Jan; 74(2):206-15. PubMed ID: 18990425 [TBL] [Abstract][Full Text] [Related]
19. Enhancement of arsenic mobility by indigenous bacteria from mine tailings as response to organic supply. Lee JU; Lee SW; Chon HT; Kim KW; Lee JS Environ Int; 2009 Apr; 35(3):496-501. PubMed ID: 18789531 [TBL] [Abstract][Full Text] [Related]