These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
643 related articles for article (PubMed ID: 19716830)
1. Characterization of the heterogeneity and specificity of interpolypeptide interactions in amyloid protofibrils by measurement of site-specific fluorescence anisotropy decay kinetics. Jha A; Udgaonkar JB; Krishnamoorthy G J Mol Biol; 2009 Oct; 393(3):735-52. PubMed ID: 19716830 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the formation of amyloid protofibrils from barstar by mapping residue-specific fluorescence dynamics. Mukhopadhyay S; Nayak PK; Udgaonkar JB; Krishnamoorthy G J Mol Biol; 2006 May; 358(4):935-42. PubMed ID: 16546212 [TBL] [Abstract][Full Text] [Related]
3. Conformational conversion may precede or follow aggregate elongation on alternative pathways of amyloid protofibril formation. Kumar S; Udgaonkar JB J Mol Biol; 2009 Jan; 385(4):1266-76. PubMed ID: 19063899 [TBL] [Abstract][Full Text] [Related]
4. Structurally distinct amyloid protofibrils form on separate pathways of aggregation of a small protein. Kumar S; Udgaonkar JB Biochemistry; 2009 Jul; 48(27):6441-9. PubMed ID: 19505087 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of formation of amyloid protofibrils of barstar from soluble oligomers: evidence for multiple steps and lateral association coupled to conformational conversion. Kumar S; Mohanty SK; Udgaonkar JB J Mol Biol; 2007 Apr; 367(4):1186-204. PubMed ID: 17292913 [TBL] [Abstract][Full Text] [Related]
6. Multiparametric fluorescence detection of early stages in the amyloid protein aggregation of pyrene-labeled alpha-synuclein. Thirunavukkuarasu S; Jares-Erijman EA; Jovin TM J Mol Biol; 2008 May; 378(5):1064-73. PubMed ID: 18433772 [TBL] [Abstract][Full Text] [Related]
7. Dependence on solution conditions of aggregation and amyloid formation by an SH3 domain. Zurdo J; Guijarro JI; Jiménez JL; Saibil HR; Dobson CM J Mol Biol; 2001 Aug; 311(2):325-40. PubMed ID: 11478864 [TBL] [Abstract][Full Text] [Related]
8. Amyloid formation from HypF-N under conditions in which the protein is initially in its native state. Marcon G; Plakoutsi G; Canale C; Relini A; Taddei N; Dobson CM; Ramponi G; Chiti F J Mol Biol; 2005 Mar; 347(2):323-35. PubMed ID: 15740744 [TBL] [Abstract][Full Text] [Related]
9. A structural core within apolipoprotein C-II amyloid fibrils identified using hydrogen exchange and proteolysis. Wilson LM; Mok YF; Binger KJ; Griffin MD; Mertens HD; Lin F; Wade JD; Gooley PR; Howlett GJ J Mol Biol; 2007 Mar; 366(5):1639-51. PubMed ID: 17217959 [TBL] [Abstract][Full Text] [Related]
10. Amyloid fibril formation from full-length and fragments of amylin. Goldsbury C; Goldie K; Pellaud J; Seelig J; Frey P; Müller SA; Kistler J; Cooper GJ; Aebi U J Struct Biol; 2000 Jun; 130(2-3):352-62. PubMed ID: 10940238 [TBL] [Abstract][Full Text] [Related]
11. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange. Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067 [TBL] [Abstract][Full Text] [Related]
12. Lability landscape and protease resistance of human insulin amyloid: a new insight into its molecular properties. Malisauskas M; Weise C; Yanamandra K; Wolf-Watz M; Morozova-Roche L J Mol Biol; 2010 Feb; 396(1):60-74. PubMed ID: 19913026 [TBL] [Abstract][Full Text] [Related]
13. Amyloid fibrils formation and amorphous aggregation in concanavalin A. Vetri V; Canale C; Relini A; Librizzi F; Militello V; Gliozzi A; Leone M Biophys Chem; 2007 Jan; 125(1):184-90. PubMed ID: 16934387 [TBL] [Abstract][Full Text] [Related]
14. Beta(2)-microglobulin and its deamidated variant, N17D form amyloid fibrils with a range of morphologies in vitro. Kad NM; Thomson NH; Smith DP; Smith DA; Radford SE J Mol Biol; 2001 Oct; 313(3):559-71. PubMed ID: 11676539 [TBL] [Abstract][Full Text] [Related]
15. Lysozyme amyloidogenesis is accelerated by specific nicking and fragmentation but decelerated by intact protein binding and conversion. Mishra R; Sörgjerd K; Nyström S; Nordigården A; Yu YC; Hammarström P J Mol Biol; 2007 Feb; 366(3):1029-44. PubMed ID: 17196616 [TBL] [Abstract][Full Text] [Related]
16. A partially structured region of a largely unstructured protein, Plasmodium falciparum merozoite surface protein 2 (MSP2), forms amyloid-like fibrils. Yang X; Adda CG; Keizer DW; Murphy VJ; Rizkalla MM; Perugini MA; Jackson DC; Anders RF; Norton RS J Pept Sci; 2007 Dec; 13(12):839-48. PubMed ID: 17883245 [TBL] [Abstract][Full Text] [Related]
17. A comparative study of amyloid fibril formation by residues 15-19 of the human calcitonin hormone: a single beta-sheet model with a small hydrophobic core. Haspel N; Zanuy D; Ma B; Wolfson H; Nussinov R J Mol Biol; 2005 Feb; 345(5):1213-27. PubMed ID: 15644216 [TBL] [Abstract][Full Text] [Related]
18. Vibrational circular dichroism as a probe of fibrillogenesis: the origin of the anomalous intensity enhancement of amyloid-like fibrils. Measey TJ; Schweitzer-Stenner R J Am Chem Soc; 2011 Feb; 133(4):1066-76. PubMed ID: 21186804 [TBL] [Abstract][Full Text] [Related]
19. Islet amyloid polypeptide: identification of long-range contacts and local order on the fibrillogenesis pathway. Padrick SB; Miranker AD J Mol Biol; 2001 May; 308(4):783-94. PubMed ID: 11350174 [TBL] [Abstract][Full Text] [Related]
20. Role of different regions of alpha-synuclein in the assembly of fibrils. Qin Z; Hu D; Han S; Hong DP; Fink AL Biochemistry; 2007 Nov; 46(46):13322-30. PubMed ID: 17963364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]