These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 19716894)

  • 21. Effect of slow repetitive TMS of the motor cortex on ipsilateral sequential simple finger movements and motor skill learning.
    Kobayashi M
    Restor Neurol Neurosci; 2010; 28(4):437-48. PubMed ID: 20714068
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Motor sequence complexity and performing hand produce differential patterns of hemispheric lateralization.
    Haaland KY; Elsinger CL; Mayer AR; Durgerian S; Rao SM
    J Cogn Neurosci; 2004 May; 16(4):621-36. PubMed ID: 15165352
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Striatal-cerebellar networks mediate consolidation in a motor sequence learning task: An fMRI study using dynamic causal modelling.
    Tzvi E; Stoldt A; Witt K; Krämer UM
    Neuroimage; 2015 Nov; 122():52-64. PubMed ID: 26244275
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Decoding sequential finger movements from preparatory activity in higher-order motor regions: a functional magnetic resonance imaging multi-voxel pattern analysis.
    Nambu I; Hagura N; Hirose S; Wada Y; Kawato M; Naito E
    Eur J Neurosci; 2015 Nov; 42(10):2851-9. PubMed ID: 26342210
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shifts in connectivity during procedural learning after motor cortex stimulation: A combined transcranial magnetic stimulation/functional magnetic resonance imaging study.
    Steel A; Song S; Bageac D; Knutson KM; Keisler A; Saad ZS; Gotts SJ; Wassermann EM; Wilkinson L
    Cortex; 2016 Jan; 74():134-48. PubMed ID: 26673946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neuromodulation of reinforced skill learning reveals the causal function of prefrontal cortex.
    Dayan E; Herszage J; Laor-Maayany R; Sharon H; Censor N
    Hum Brain Mapp; 2018 Dec; 39(12):4724-4732. PubMed ID: 30043536
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pilot fMRI investigation of representational plasticity associated with motor skill learning and its functional consequences.
    Plow EB; Carey JR
    Brain Imaging Behav; 2012 Sep; 6(3):437-53. PubMed ID: 22454141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. fMRI characterisation of widespread brain networks relevant for behavioural variability in fine hand motor control with and without visual feedback.
    Mayhew SD; Porcaro C; Tecchio F; Bagshaw AP
    Neuroimage; 2017 Mar; 148():330-342. PubMed ID: 28093359
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cortical organization of sensory corrections in visuomotor skill acquisition.
    Mitra S; Bhalerao A; Summers P; Williams SC
    Neurosci Lett; 2005 Jul 1-8; 382(1-2):76-81. PubMed ID: 15911125
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting future learning from baseline network architecture.
    Mattar MG; Wymbs NF; Bock AS; Aguirre GK; Grafton ST; Bassett DS
    Neuroimage; 2018 May; 172():107-117. PubMed ID: 29366697
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic Reconfiguration of Visuomotor-Related Functional Connectivity Networks.
    Brovelli A; Badier JM; Bonini F; Bartolomei F; Coulon O; Auzias G
    J Neurosci; 2017 Jan; 37(4):839-853. PubMed ID: 28123020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Compensatory motor network connectivity is associated with motor sequence learning after subcortical stroke.
    Wadden KP; Woodward TS; Metzak PD; Lavigne KM; Lakhani B; Auriat AM; Boyd LA
    Behav Brain Res; 2015 Jun; 286():136-45. PubMed ID: 25757996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Motor learning in man: a review of functional and clinical studies.
    Halsband U; Lange RK
    J Physiol Paris; 2006 Jun; 99(4-6):414-24. PubMed ID: 16730432
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Encoding and recall of finger sequences in experienced pianists compared with musically naïve controls: a combined behavioral and functional imaging study.
    Pau S; Jahn G; Sakreida K; Domin M; Lotze M
    Neuroimage; 2013 Jan; 64():379-87. PubMed ID: 22982586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cortical mechanisms for acquisition and performance of bimanual motor sequences.
    De Weerd P; Reinke K; Ryan L; McIsaac T; Perschler P; Schnyer D; Trouard T; Gmitro A
    Neuroimage; 2003 Aug; 19(4):1405-16. PubMed ID: 12948698
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brain activation during execution and motor imagery of novel and skilled sequential hand movements.
    Lacourse MG; Orr EL; Cramer SC; Cohen MJ
    Neuroimage; 2005 Sep; 27(3):505-19. PubMed ID: 16046149
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of long-term practice and task complexity in musicians and nonmusicians performing simple and complex motor tasks: implications for cortical motor organization.
    Meister I; Krings T; Foltys H; Boroojerdi B; Müller M; Töpper R; Thron A
    Hum Brain Mapp; 2005 Jul; 25(3):345-52. PubMed ID: 15852385
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cortico-cerebellar functional connectivity and sequencing of movements in schizophrenia.
    Kasparek T; Rehulova J; Kerkovsky M; Sprlakova A; Mechl M; Mikl M
    BMC Psychiatry; 2012 Mar; 12():17. PubMed ID: 22409909
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distinguishable brain activation networks for short- and long-term motor skill learning.
    Floyer-Lea A; Matthews PM
    J Neurophysiol; 2005 Jul; 94(1):512-8. PubMed ID: 15716371
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic cortical involvement in implicit and explicit motor sequence learning. A PET study.
    Honda M; Deiber MP; Ibáñez V; Pascual-Leone A; Zhuang P; Hallett M
    Brain; 1998 Nov; 121 ( Pt 11)():2159-73. PubMed ID: 9827775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.