These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 19717427)

  • 1. A force field for virtual atom molecular mechanics of proteins.
    Korkut A; Hendrickson WA
    Proc Natl Acad Sci U S A; 2009 Sep; 106(37):15667-72. PubMed ID: 19717427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computation of conformational transitions in proteins by virtual atom molecular mechanics as validated in application to adenylate kinase.
    Korkut A; Hendrickson WA
    Proc Natl Acad Sci U S A; 2009 Sep; 106(37):15673-8. PubMed ID: 19706894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular modeling of proteins: a strategy for energy minimization by molecular mechanics in the AMBER force field.
    Kini RM; Evans HJ
    J Biomol Struct Dyn; 1991 Dec; 9(3):475-88. PubMed ID: 1687724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A minimalist network model for coarse-grained normal mode analysis and its application to biomolecular x-ray crystallography.
    Lu M; Ma J
    Proc Natl Acad Sci U S A; 2008 Oct; 105(40):15358-63. PubMed ID: 18832168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of full-atomic and coarse-grained models to examine the molecular fluctuations of c-AMP dependent protein kinase.
    Keskin O
    J Biomol Struct Dyn; 2002 Dec; 20(3):333-45. PubMed ID: 12437372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-atom modeling of anisotropic atomic fluctuations in protein crystal structures.
    Hafner J; Zheng W
    J Chem Phys; 2011 Oct; 135(14):144114. PubMed ID: 22010705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of protein folding by coarse-grained molecular dynamics with the UNRES force field.
    Maisuradze GG; Senet P; Czaplewski C; Liwo A; Scheraga HA
    J Phys Chem A; 2010 Apr; 114(13):4471-85. PubMed ID: 20166738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physics-based potentials for the coupling between backbone- and side-chain-local conformational states in the UNited RESidue (UNRES) force field for protein simulations.
    Sieradzan AK; Krupa P; Scheraga HA; Liwo A; Czaplewski C
    J Chem Theory Comput; 2015 Feb; 11(2):817-31. PubMed ID: 25691834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein imperfections: separating intrinsic from extrinsic variation of torsion angles.
    Butterfoss GL; Richardson JS; Hermans J
    Acta Crystallogr D Biol Crystallogr; 2005 Jan; 61(Pt 1):88-98. PubMed ID: 15608380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal modeling of atomic fluctuations in protein crystal structures for weak crystal contact interactions.
    Hafner J; Zheng W
    J Chem Phys; 2010 Jan; 132(1):014111. PubMed ID: 20078153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coarse grained normal mode analysis vs. refined Gaussian Network Model for protein residue-level structural fluctuations.
    Park JK; Jernigan R; Wu Z
    Bull Math Biol; 2013 Jan; 75(1):124-60. PubMed ID: 23296997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate binding and catalytic mechanism in phospholipase C from Bacillus cereus: a molecular mechanics and molecular dynamics study.
    da Graça Thrige D; Buur JR; Jørgensen FS
    Biopolymers; 1997 Sep; 42(3):319-36. PubMed ID: 9279125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A structure-based benchmark for protein-protein binding affinity.
    Kastritis PL; Moal IH; Hwang H; Weng Z; Bates PA; Bonvin AM; Janin J
    Protein Sci; 2011 Mar; 20(3):482-91. PubMed ID: 21213247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in.
    Ditzler MA; Otyepka M; Sponer J; Walter NG
    Acc Chem Res; 2010 Jan; 43(1):40-7. PubMed ID: 19754142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A geometry force field which converts low-resolution X-ray models to structures with properties found at ultra high resolution.
    McMartin C
    Protein Sci; 2012 Jan; 21(1):75-83. PubMed ID: 22057834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long dynamics simulations of proteins using atomistic force fields and a continuum representation of solvent effects: calculation of structural and dynamic properties.
    Li X; Hassan SA; Mehler EL
    Proteins; 2005 Aug; 60(3):464-84. PubMed ID: 15959866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations.
    Mackerell AD; Feig M; Brooks CL
    J Comput Chem; 2004 Aug; 25(11):1400-15. PubMed ID: 15185334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum chemistry can locally improve protein crystal structures.
    Ryde U; Nilsson K
    J Am Chem Soc; 2003 Nov; 125(47):14232-3. PubMed ID: 14624544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.