These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 19717427)

  • 41. Protein modeling and structure prediction with a reduced representation.
    Kolinski A
    Acta Biochim Pol; 2004; 51(2):349-71. PubMed ID: 15218533
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Virtual interface substructure synthesis method for normal mode analysis of super-large molecular complexes at atomic resolution.
    Chen X; Sun Y; An X; Ming D
    J Chem Phys; 2011 Oct; 135(14):144108. PubMed ID: 22010699
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coarse-grained protein model with residue orientation energies derived from atomic force fields.
    Betancourt MR
    J Phys Chem B; 2009 Nov; 113(44):14824-30. PubMed ID: 19817469
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes.
    Gohlke H; Kiel C; Case DA
    J Mol Biol; 2003 Jul; 330(4):891-913. PubMed ID: 12850155
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Calculation of electrostatic interaction energies in molecular dimers from atomic multipole moments obtained by different methods of electron density partitioning.
    Volkov A; Coppens P
    J Comput Chem; 2004 May; 25(7):921-34. PubMed ID: 15027105
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determination of side-chain-rotamer and side-chain and backbone virtual-bond-stretching potentials of mean force from AM1 energy surfaces of terminally-blocked amino-acid residues, for coarse-grained simulations of protein structure and folding. II. Results, comparison with statistical potentials, and implementation in the UNRES force field.
    Kozłowska U; Maisuradze GG; Liwo A; Scheraga HA
    J Comput Chem; 2010 Apr; 31(6):1154-67. PubMed ID: 20017135
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A potential function for conformational analysis of proteins.
    Crippen GM; Viswanadhan VN
    Int J Pept Protein Res; 1984 Sep; 24(3):279-96. PubMed ID: 6500807
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of protein models minimized by the all-atom and united-atom models in the AMBER force field: correlation of RMS deviation with the crystallographic R factor and size.
    Kini RM; Evans HJ
    J Biomol Struct Dyn; 1992 Oct; 10(2):265-79. PubMed ID: 1466809
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Contact Potential for Structure Prediction of Proteins and Protein Complexes from Potts Model.
    Anishchenko I; Kundrotas PJ; Vakser IA
    Biophys J; 2018 Sep; 115(5):809-821. PubMed ID: 30122295
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A general method for the derivation of the functional forms of the effective energy terms in coarse-grained energy functions of polymers. II. Backbone-local potentials of coarse-grained O1→4-bonded polyglucose chains.
    Lubecka EA; Liwo A
    J Chem Phys; 2017 Sep; 147(11):115101. PubMed ID: 28938819
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Anharmonic normal mode analysis of elastic network model improves the modeling of atomic fluctuations in protein crystal structures.
    Zheng W
    Biophys J; 2010 Jun; 98(12):3025-34. PubMed ID: 20550915
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Template-Guided Protein Structure Prediction and Refinement Using Optimized Folding Landscape Force Fields.
    Chen M; Lin X; Lu W; Schafer NP; Onuchic JN; Wolynes PG
    J Chem Theory Comput; 2018 Nov; 14(11):6102-6116. PubMed ID: 30240202
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Generalized spring tensor models for protein fluctuation dynamics and conformation changes.
    Na H; Lin TL; Song G
    Adv Exp Med Biol; 2014; 805():107-35. PubMed ID: 24446359
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Coarse-grained versus atomistic simulations: realistic interaction free energies for real proteins.
    May A; Pool R; van Dijk E; Bijlard J; Abeln S; Heringa J; Feenstra KA
    Bioinformatics; 2014 Feb; 30(3):326-34. PubMed ID: 24273239
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improving Coarse-Grained Protein Force Fields with Small-Angle X-ray Scattering Data.
    Latham AP; Zhang B
    J Phys Chem B; 2019 Feb; 123(5):1026-1034. PubMed ID: 30620594
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The tetracycline: Mg2+ complex: a molecular mechanics force field.
    Aleksandrov A; Simonson T
    J Comput Chem; 2006 Oct; 27(13):1517-33. PubMed ID: 16847933
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hybrid Methods for Macromolecular Modeling by Molecular Mechanics Simulations with Experimental Data.
    Miyashita O; Tama F
    Adv Exp Med Biol; 2018; 1105():199-217. PubMed ID: 30617831
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-resolution protein complexes from integrating genomic information with molecular simulation.
    Schug A; Weigt M; Onuchic JN; Hwa T; Szurmant H
    Proc Natl Acad Sci U S A; 2009 Dec; 106(52):22124-9. PubMed ID: 20018738
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Generalized energy-based fragmentation approach and its applications to macromolecules and molecular aggregates.
    Li S; Li W; Ma J
    Acc Chem Res; 2014 Sep; 47(9):2712-20. PubMed ID: 24873495
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Calculation of protein backbone geometry from alpha-carbon coordinates based on peptide-group dipole alignment.
    Liwo A; Pincus MR; Wawak RJ; Rackovsky S; Scheraga HA
    Protein Sci; 1993 Oct; 2(10):1697-714. PubMed ID: 7504550
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.