These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 19717463)

  • 1. Spontaneous cortical activity in awake monkeys composed of neuronal avalanches.
    Petermann T; Thiagarajan TC; Lebedev MA; Nicolelis MA; Chialvo DR; Plenz D
    Proc Natl Acad Sci U S A; 2009 Sep; 106(37):15921-6. PubMed ID: 19717463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-electrode array recordings of neuronal avalanches in organotypic cultures.
    Plenz D; Stewart CV; Shew W; Yang H; Klaus A; Bellay T
    J Vis Exp; 2011 Aug; (54):. PubMed ID: 21841767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maintained avalanche dynamics during task-induced changes of neuronal activity in nonhuman primates.
    Yu S; Ribeiro TL; Meisel C; Chou S; Mitz A; Saunders R; Plenz D
    Elife; 2017 Nov; 6():. PubMed ID: 29115213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state.
    Bellay T; Klaus A; Seshadri S; Plenz D
    Elife; 2015 Jul; 4():e07224. PubMed ID: 26151674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective Participation of Single Cortical Neurons in Neuronal Avalanches.
    Bellay T; Shew WL; Yu S; Falco-Walter JJ; Plenz D
    Front Neural Circuits; 2020; 14():620052. PubMed ID: 33551757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scale-invariant neuronal avalanche dynamics and the cut-off in size distributions.
    Yu S; Klaus A; Yang H; Plenz D
    PLoS One; 2014; 9(6):e99761. PubMed ID: 24927158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The scale-invariant, temporal profile of neuronal avalanches in relation to cortical γ-oscillations.
    Miller SR; Yu S; Plenz D
    Sci Rep; 2019 Nov; 9(1):16403. PubMed ID: 31712632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The characteristic patterns of neuronal avalanches in mice under anesthesia and at rest: An investigation using constrained artificial neural networks.
    Fagerholm ED; Dinov M; Knöpfel T; Leech R
    PLoS One; 2018; 13(5):e0197893. PubMed ID: 29795654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-organization and neuronal avalanches in networks of dissociated cortical neurons.
    Pasquale V; Massobrio P; Bologna LL; Chiappalone M; Martinoia S
    Neuroscience; 2008 Jun; 153(4):1354-69. PubMed ID: 18448256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures.
    Beggs JM; Plenz D
    J Neurosci; 2004 Jun; 24(22):5216-29. PubMed ID: 15175392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Landau-Ginzburg theory of cortex dynamics: Scale-free avalanches emerge at the edge of synchronization.
    di Santo S; Villegas P; Burioni R; Muñoz MA
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1356-E1365. PubMed ID: 29378970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous cortical activity is transiently poised close to criticality.
    Hahn G; Ponce-Alvarez A; Monier C; Benvenuti G; Kumar A; Chavane F; Deco G; Frégnac Y
    PLoS Comput Biol; 2017 May; 13(5):e1005543. PubMed ID: 28542191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronal avalanches in spontaneous activity in vivo.
    Hahn G; Petermann T; Havenith MN; Yu S; Singer W; Plenz D; Nikolic D
    J Neurophysiol; 2010 Dec; 104(6):3312-22. PubMed ID: 20631221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The organizing principles of neuronal avalanches: cell assemblies in the cortex?
    Plenz D; Thiagarajan TC
    Trends Neurosci; 2007 Mar; 30(3):101-10. PubMed ID: 17275102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parabolic avalanche scaling in the synchronization of cortical cell assemblies.
    Capek E; Ribeiro TL; Kells P; Srinivasan K; Miller SR; Geist E; Victor M; Vakili A; Pajevic S; Chialvo DR; Plenz D
    Nat Commun; 2023 May; 14(1):2555. PubMed ID: 37137888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches.
    Shew WL; Yang H; Yu S; Roy R; Plenz D
    J Neurosci; 2011 Jan; 31(1):55-63. PubMed ID: 21209189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Cell Membrane Potential Fluctuations Evince Network Scale-Freeness and Quasicriticality.
    Johnson JK; Wright NC; Xià J; Wessel R
    J Neurosci; 2019 Jun; 39(24):4738-4759. PubMed ID: 30952810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximal variability of phase synchrony in cortical networks with neuronal avalanches.
    Yang H; Shew WL; Roy R; Plenz D
    J Neurosci; 2012 Jan; 32(3):1061-72. PubMed ID: 22262904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spike avalanches exhibit universal dynamics across the sleep-wake cycle.
    Ribeiro TL; Copelli M; Caixeta F; Belchior H; Chialvo DR; Nicolelis MA; Ribeiro S
    PLoS One; 2010 Nov; 5(11):e14129. PubMed ID: 21152422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scale-free and economical features of functional connectivity in neuronal networks.
    Thivierge JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022721. PubMed ID: 25215772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.